fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Nuclear & Particle Physics JEST-2013

- ^{238}U decays with a half life of 4.51×10^9 years, the decay series eventually ending at Q1. ²⁰⁶Pb, which is stable. A rock sample analysis shows that the ratio of the numbers of atoms of ^{206}Pb to ^{238}U is 0.0058. Assuming that all the ^{206}Pb has been produced by the decay of ^{238}U and that all other half-lives in the chain are negligible, the age of the rock sample is
 - (a) 38×10^6 years (b) 48×10^6 years
- (c) 38×10^7 years
- (d) 48×10^7 years

Ans.: (a)

Solution:
$$t = \frac{1}{\lambda_u} \ln \left(\frac{N_{pb} + N_u}{N_u} \right)$$

Since, $\frac{1}{\lambda_u} = \frac{t_{1/2}}{0.693} = \frac{4.51 \times 10^9}{0.693} = 6.507 \times 10^9$

Hence, $t = 6.507 \times 10^9 \ln(0.0058 + 1) = 0.005783 \times 6.507 \times 10^9 = 37 \times 10^6 \text{ year}$

- The binding energy of the k-shell electron in a Uranium atom (Z = 92, A = 238) will be Q2. modified due to (i) screening caused by other electrons and (ii) the finite extent of the nucleus as follows:
 - (a) increases due to (i), remains unchanged due to (ii)
 - (b) decreases due to (i), decreases due to (ii)
 - (c) increases due to (i), increases due to (ii)
 - (d) decreases due to (i), remains unchanged due to (ii)

Ans.: (b)

fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

JEST-2014

Q3. In the mixture of isotopes normally found on the earth at the present time, ${}^{238}_{92}U$ has an abundance of 99.3% and ${}^{235}_{92}U$ has an abundance of 0.7%. The measured lifetimes of these isotopes are 6.52×10^9 years and 1.02×10^9 years, respectively. Assuming that they were equally abundant when the earth was formed, the estimated age of the earth, in years is

(a) 6.0×10^9

(b) 1.0×10^9

(c) 6.0×10^8

(d) 1.0×10^8

Ans.: (a)

Solution: If the number of $^{92}U^{238}$ nuclei originally formed is N, the number present now is

$$N_{238} = Ne^{-t/T} = Ne^{-t/6.52}$$

where t is elapsed time in units of 10^9 year and T is life time of U. Since the number of $^{92}U^{235}$ nuclei originally formed is. The number now present is

$$N_{235} = Ne^{-t/1.02}$$

The present abundance of $^{92}U^{235}$ is

$$7 \times 10^{-3} = \frac{N_{235}}{N_{238} + N_{235}} \approx \frac{N_{235}}{N_{238}} = \frac{Ne^{-t/1.02}}{Ne^{-t/6.52}} = e^{0.827t} \approx \frac{1}{7 \times 10^{-3}} = 143 = t = \frac{4.96}{0.827} = 6.0$$

That is, the elapsed time is $t = 6.0 \times 10^9$ yr.

JEST-2015

Q4. The stable nucleus that has $\frac{1}{3}$ the radius of ¹⁸⁹ Os nucleus is,

(a) ^{7}Li

(b) ^{16}O

(c) ⁴ *He*

(d) $^{14} N$

Ans.: (a)

Solution: $R = \frac{1}{3}R_{Os} \Rightarrow R_0 (A)^{1/3} = \frac{1}{3}R_0 (189)^{1/3} \Rightarrow A = 7$

Q5. The reaction $e^+ + e^- \rightarrow \gamma$ is forbidden because,

(a) lepton number is not conserved

- (b) linear momentum is not conserved
- (c) angular momentum is not conserved
- (d) charge is not conserved

Ans.: (b)

Solution: In order to conserve linear momentum two photons are required that move in opposite direction.

fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

JEST-2016

Q6. The half-life of a radioactive nuclear source is 9 days. The fraction of nuclei which are left under caved after 3 days is:

(b) $\frac{1}{3}$ (c) $\frac{5}{6}$

(d) $\frac{1}{2^{1/3}}$

Ans.: (d)

Solution: $N = N_0 \left(\frac{1}{2}\right)^n = N_0 \left(\frac{1}{2}\right)^{3/9} \Rightarrow \frac{N}{N_0} = \frac{1}{2^{1/3}}$

