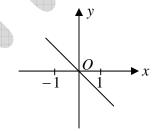

B.H.U. (2014) – M.Sc. Tech (Geophysics)


Q1. The graph of the derivative of f is shown in the figure below. Which of the following could be the graph of f?

- The area between the curves y = x and $y = \sin x$ for $0 \ge x \ge \frac{\pi}{4}$ is Q2.
 - (a) $\frac{\pi^2}{32} + \frac{1}{\sqrt{2}} 1$ (b) $\frac{\pi^2}{32}$
- (c) $\frac{\pi^2}{32} \frac{1}{\sqrt{2}} 1$ (d) 1

(d)

- The center of curvature of the parabola $y^2 = 4 px$ corresponding to any point on the Q3. curve is
 - (a) $\left(3x 2p, \frac{y^3}{4p^2}\right)$

(b) $\left(3x + 2p, -\frac{y^3}{4p^2}\right)$

(c) $\left(-3x-2p, \frac{y^3}{4p^2}\right)$

(d) $\left(3x + 2p, \frac{y^3}{4n^2}\right)$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

The point (x, y) on the curve of $y = \sqrt{x}$ nearest to the point (4,0) is Q4.

(a)
$$x = \frac{7}{2}, y = \sqrt{\frac{7}{2}}$$

(b)
$$x = \sqrt{\frac{7}{2}}, y = \frac{7}{2}$$

(c)
$$x = \frac{7}{4}$$
, $y = \sqrt{\frac{7}{4}}$

(d)
$$x = \sqrt{\frac{6}{2}}, y = \frac{6}{2}$$

Consider the polynomial $y = ax^n + bx^3 + c$, n > 4. The *n*th derivative of this polynomial Q5.

$$\frac{d^n y}{dx^n}$$
 is

- (a) n!
- (b) *n*
- (d) a*n

Q6. If the length of a rectangle decreases at the rate of 3 cm/sec and its width increases at the rate of 2 cm/sec, the rate of change of the area of the rectangle when its length is 10 cm and its width is 4 cm is

- (a) $14 \,\mathrm{cm}^2/\mathrm{sec}$
- (b) 6cm²/sec
- (c) $9 \text{ cm}^2/\text{sec}$
- (d) $8 \text{cm}^2/\text{sec}$

If $3x^2 + 2xy + y^2 = 2$, then the value of $\frac{dy}{dx}$ at x = 1 is **Q**7.

- (a) 2
- (b) 0
- (c) -2
- (d) not defined

The function $y = x + \frac{2}{x}$ has a relative maximum at the value of x equal to Q8.

(a) 2

- (b) -2

The asymptotes of the graph of the parametric equations $x = \frac{1}{t}$, $y = \frac{t}{t+1}$ are **Q**9.

- (a) x = 0, y = 0
- (b) x = 0 only
- (c) x = -1, y = 0 (d) x = -1 only

The curvature of the cubical parabola $y = x^3$ at (1, 1) is Q10.

- (a) $\frac{6}{\sqrt{1000}}$
- (b) 0.3
- (c) 0.6
- (d) $\frac{3}{\sqrt{1000}}$

What is the average (mean) value of $3t^3 - t^2$ over the interval $-1 \le t \le 2$? Q11.

- (a) $\frac{11}{4}$
- (b) $\frac{7}{2}$
- (c) 8
- (d) $\frac{33}{4}$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Consider the integral $I_n = fx^n e^x dx$. Which of the following is true? Q12.

(a)
$$I_{n+1} = x^{n+1}e^x - (n+1)I_{n-1}$$

(b)
$$I_n = x^n e^x + nI_{n+1}$$

(c)
$$I_{n+1} = x^{n+1}e^x - (n+1)I_n$$

(d)
$$I_n = x^n e^x + n I_{n-1}$$

For what values of α and β the critical number (extremum) of the polynomial function O13. $f(x) = x^3 + \alpha x + \beta$ is 4?

(a)
$$\alpha = 48$$
 and $\beta = \text{arbitrary}$

(b)
$$\alpha = -48$$
 and $\beta = \text{arbitrary}$

(c)
$$\alpha = \text{arbitrary and } \beta = 48$$

(d)
$$\alpha$$
 = arbitrary and β = -48

The mean value theorem guarantees the existence of a special point on the graph $y = \sqrt{x}$ Q14. between (0, 0) and (4, 2). What are the coordinates of this point?

(a)
$$(2, 1)$$

(c)
$$(2, \sqrt{2})$$

(d) None of the above

The value of the integral $\int_0^1 \sqrt{x^2 - 2x + 1} \ dx$ is Q15.

(b)
$$-\frac{1}{2}$$

(c)
$$\frac{1}{2}$$

Q16. If $U = x^y$, then $\frac{\left(\frac{\partial U}{\partial x} + \frac{\partial U}{\partial x}\right)}{\left(\frac{\partial U}{\partial x} + \frac{\partial U}{\partial x}\right)}$ is

$$\frac{\left(\frac{\partial U}{\partial x} + \frac{\partial U}{\partial x}\right)}{U} \text{ is}$$

(a)
$$\frac{y}{x} + \log(x)$$

(b)
$$\frac{y}{x} + \log(y)$$

(c)
$$\frac{x}{y} + \log(x)$$

(a)
$$\frac{y}{x} + \log(x)$$
 (b) $\frac{y}{x} + \log(y)$ (c) $\frac{x}{y} + \log(x)$ (d) $\frac{x}{y} - \log(y)$

The slope of the line passing through the points $\left(1, -\frac{1}{2}\right)$ and $\left(-1, 1\right)$ is Q17.

(a)
$$\frac{3}{4}$$

(b)
$$\frac{4}{3}$$

(c)
$$-\frac{4}{3}$$
 (d) $-\frac{3}{4}$

(d)
$$-\frac{3}{4}$$

O18. The coordinates of the fourth corner of a rectangle, when three of whose corners (-1, 2), (4, 2), (-1, -3) is

(a)
$$(1, 4)$$

(a)
$$(1, 4)$$
 (b) $(4, 1)$

(c)
$$(4, -3)$$
 (d) $(-1, 3)$

(d)
$$(-1, 3)$$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- The vertex of the parabola $2y x^2 4x + 6 = 0$ is Q19.
 - (a) (2,5)
- (b) (-2,-5) (c) (5,2)
- (d) (-5, -2)
- The plane *P* through A(2, -3, -4) with normal vector $\vec{n} = 4\hat{i} \hat{j} + 3\hat{k}$ is Q20.
 - (a) 4x + y + 3z = 1

(b) 4x-3y+z=-1

(c) 4x - y + 3z = -1

- (d) 4x y + 3z = 1
- Q21. The angle between the two planes 3x + 4y - 5z = 1 and 4x + 5y - 6z = 1 is
 - (a) $\sin^{-1} \left(\frac{60}{\sqrt{50}} \right)$

(b) $-\cos^{-1}\left(\frac{60}{\sqrt{50}}\right)$

(c) $\cos^{-1} \left(\frac{62}{\sqrt{50} \sqrt{77}} \right)$

- (d) $-\sin^{-1}\left(\frac{62}{\sqrt{50}\sqrt{77}}\right)$
- Q22. $M = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$ is the discriminant of the conic section. Then the conic section is a
 - (a) parabola

(b) hyperbola

(c) ellipse

- (d) rectangular hyperbola
- The equation of the line with a slope 5 and passing through the point (-3, 3) is Q23.
 - (a) y+3=5(x-3)

(b) $y = \frac{5}{3}(x-3)$

(c) $y = \frac{5}{2}(x+3)$

- (d) y-3=5(x+3)
- Consider two circles $x^2 + y^2 + 2ax + 2by = 0$ and $x^2 + y^2 + 2cx + 2dy = 0$ touch each Q24. other. Then the following condition is true.
 - (a) ab bc = 0
 - (b) ac bd = 0
 - (c) $ad bc \neq 0$
 - (d) No condition on a, b, c, d

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- The equation of the hyperbola with foci (0, 0) and (0, 4) and asymptotes $y = \pm \frac{1}{2}x$ is Q25.
 - (a) $x^2 \frac{(y-2)^2}{4} = 1$

(b) $x^2 + \frac{(y-2)^2}{4} = -1$

(c) $y^2 - \frac{(x-2)^2}{4} = 1$

- (d) $y^2 + \frac{(x-2)^2}{4} = 1$
- Which one of the following statements is correct? The graph of $y^2 = x^2 + 9$ is symme Q26. about
 - I. The *x*-axis
- II. The y-axis
- III. The origin

- (a) I only
- (b) II only
- (c) I and II only
- (d) I, II and III

- Q27. The polar form of a parabola is
 - (a) $r = \frac{2p}{1 \cos \theta}$ (b) $r = \frac{-2p}{1 \sin \theta}$ (c) $r = \frac{2p}{1 + \cos \theta}$ (d) $r = \frac{2p}{-1 + \sin \theta}$

- The intervals of numbers satisfying the inequality |x+1| > 2 are Q28.
 - (a) x > -1 and x < 3

(b) x < 1 and x > -3

(c) x > 3 and x < -1

- (d) x > 1 and x < -3
- Solution of the inequality with absolute value is $|x^2 + x 2| < x + 3$ is Q29.
 - (a) $(-\sqrt{5}, \sqrt{5})$

- (b) $(-\sqrt{5}, -1) \cup (-1, \sqrt{5})$
- (c) $(-\infty, -1) \cup (-1, +\infty)$
- (d) $(-1, \sqrt{5})$
- Q30. The eigenvalues of the matrix $\sigma = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ are
 - (a) i, -i
- (b) (i, i)
- (c) 1, -1
- (d) 1, 1

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q31. The inverse of the matrix $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$

is

(a)
$$\frac{1}{5} \begin{pmatrix} 3 & 2 & -2 \\ 3 & 2 & 2 \\ -2 & 3 & 2 \end{pmatrix}$$

(b)
$$\frac{1}{5} \begin{pmatrix} -3 & 2 & 2 \\ 2 & 3 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$

(c)
$$\frac{1}{5} \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix}$$

(d)
$$\frac{1}{5} \begin{pmatrix} -3 & 2 & -2 \\ 2 & -3 & 2 \\ -2 & 2 & -3 \end{pmatrix}$$

Q32. The values of λ and μ for which of the following equations admit a unique solution are

$$\begin{cases} x + y - z = 6 \\ x + 2y + 3z = 10 \\ x + 2y + \lambda z = \mu \end{cases}$$

(a) $\lambda = 3$, μ is constant

(b) $\lambda \neq 3$, μ is arbitrary

(c) λ is arbitrary, $\mu \neq 3$

(d) $\lambda \neq 3$, μ is rational

Q33. The fraction $\frac{(5x+7)}{(x^2+2x-3)}$ is equal to

(a)
$$\frac{2}{(x+3)} + \frac{3}{(x-1)}$$

(b)
$$\frac{2}{(x-3)} + \frac{3}{(x+1)}$$

(c)
$$\frac{3}{(x+3)} - \frac{2}{(x-1)}$$

(d)
$$\frac{3}{(x-3)} + \frac{2}{(x+1)}$$

Q34. For any numbers a, b and non-zero c, if c is positive and a < b, then

(a)
$$ac < bc$$
 and $\frac{a}{c} < \frac{b}{c}$

(b)
$$ab < ac$$
 and $\frac{a}{b} < \frac{a}{c}$

(c)
$$ac > bc$$
 and $\frac{a}{c} < \frac{b}{c}$

(d)
$$ac < bc$$
 and $\frac{a}{c} > \frac{b}{c}$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q35. For what value of μ the determinant of the matrix

$$A = \begin{pmatrix} 2 & -\mu & 0 \\ -1 & 5 & 1 \\ 3 & \mu^2 & 5 \end{pmatrix}$$
 is 26?

- (a) (6, 2)
- (b) (-6, -2) (c) (-6, 2) (d) (6, -2)
- The matrix M have three eigenvalues λ_1 , λ_2 and λ_3 . One of the eigenvalues is -2 and Q36. the trace and determinant are 1 and 8 respectively. What are other two eigenvalues?
 - (a) (-1, 4)
- (b) (1, 4)
- (c) (1, -4)
- (d) (-1, -4)
- The function $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_0$ has *n* roots, then (f(x)) where *m* is a real positive integer, have
 - (a) *n* roots
- (b) n^m roots (c) nm roots
- (d) *m* roots
- If the position vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{w} = w_1\hat{i} + w_2\hat{j} + w_3\hat{k}$ is a constant vector then Q38. $\vec{\nabla} \times \vec{w} \times \vec{r}$ is
 - (a) w^{2}
- (b) $2\vec{w}$
- (c) 0
- (d) \vec{w}
- If a force $\vec{F} = 2x^2y\hat{i} + xy\hat{j}$ displaces a particle in the xy plane from (0, 0) to (1, 4) along the curve $y = 4x^2$, then the work done is
 - (a) 5
- (b) 6
- (c) 8

- (d) 10
- Three vectors \vec{a} , \vec{b} and \vec{c} are linearly independent if and only if O40.

- (a) $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ (b) $\vec{a} \times (\vec{b} \times \vec{c}) = 0$ (c) $\vec{a} \cdot (\vec{b} \times \vec{c}) \neq 0$ (d) $\vec{a} \times (\vec{b} \times \vec{c}) \neq 0$
- The moment about the point $\hat{i} + 2\hat{j} \hat{k}$ of a force represented by $3\hat{i} + \hat{k}$ acting through the point $2\hat{i} - \hat{j} + 3\hat{k}$ is
 - (a) $-3\hat{i} + 11\hat{j} + 9\hat{k}$ (b) $2\hat{i} + 5\hat{j} + 2\hat{k}$ (c) $11\hat{j} + 9\hat{k}$ (d) $3\hat{i} + 11\hat{j}$

- The value of $\nabla \times r^n \vec{r}$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and *n* is an integer, is O42.
 - (a) *n*
- (b) 1

(c) 0

(d) ∞

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- $\nabla \cdot (3x^2 i + 5xy^2 j + xyz^2 k)$ at the point (1, 2, 3) is
- (b) 37
- (d) 35
- The integral $\int_{S} \vec{F} \cdot \hat{n} \, ds$, where s is the unit sphere defined by $x^2 + y^2 + z^2 = 1$ and \vec{F} is Q44. the vector field $\vec{F} = 2xi + y^2 j + z^2 k$, is equal to
 - (a) $\frac{8\pi}{2}$
- (b) $\frac{\pi}{2}$ (c) $\frac{4\pi}{3}$ (d) $\frac{8\pi}{2}$
- For the following value of m, the vectors $5\hat{i} + 6\hat{j} + 7\hat{k}$, $7\hat{i} + m\hat{j} + 9\hat{k}$ and $3\hat{i} + 20\hat{j} + 5\hat{k}$ Q45. are coplanar
 - (a) 8

- (b) -8

- Q46. If $\frac{dy}{dx} = e^y$ and y = 0 when x = 1, then
 - (a) $y = \log x$
- (b) $y = \log(2-x)$ (c) $y = -\log(2-x)$ (d) $y = -\log x$
- Q47. The integral $\int_C [(x^2 + xy)dx + (x^2 + y^2)dy]$, where C is the square formed by the lines $y = \pm 1$, $x = \pm 1$ is equal to
 - (a) 0

- (c) -1
- $(d) \pm 1$

- Q48. The general solution of $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = e^x$ is
 - (a) $y = C_1 e^x + C_2 e^{-2x} + \frac{x}{3} e^{-x}$ (b) $y = C_1 e^{-x} + C_2 e^{-2x} + \frac{x}{3} e^{x}$
 - (c) $y = C_1 e^x + C_2 e^{2x} + \frac{x}{3} e^{-x}$
- (d) $y = C_1 e^{-x} + C_2 e^{2x} + \frac{x}{3} e^{x}$

where C_1 and C_2 are arbitrary constants.

- The linear harmonic oscillator, $\frac{d^2x}{dt^2} + x = 0$, with the initial conditions x(0) = 4, $\dot{x}(0) = 3$ Q49. admits the solution
 - (a) $3\sin t + 4\cos t$

- (b) $4\sin t + 3\cos t$ (c) $3\sin t 4\cos t$ (d) $4\sin t 3\cos t$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q50. If $\frac{dy}{dx} = y \tan x$, then y is equal to

(a)
$$\frac{1}{2}\tan^2 x + c$$
 (b) $c\tan x + c$ (c) $c\sec x$ (d) $In|\cos x| + c$

(b)
$$c \tan x + c$$

(c)
$$c \sec x$$

(d)
$$In \left|\cos x\right| + c$$

where c is constant.

Q51. If f'(x) = -f(x) and f(1) = 1, then f(x) = ?

(a)
$$\frac{1}{2}e^{(-2x+2)}$$
 (b) $e^{-(x+1)}$ (c) $e^{(1-x)}$

(b)
$$e^{-(x+1)}$$

(c)
$$e^{(1-x)}$$

The inverse Laplace transform of the function $\log \left(1 + \frac{w^2}{c^2}\right)$ is Q52.

(a)
$$\frac{2}{t}(1-\cos wt)$$
 (b) $\frac{2}{(1-\cos wt)}$ (c) $\frac{2}{(1-\sin wt)}$ (d) $1-\sin wt$

(b)
$$\frac{2}{(1-\cos wt)}$$

(c)
$$\frac{2}{(1-\sin wt)}$$

(d)
$$1 - \sin wt$$

Q53. $C = x \frac{dy}{dx} - y^3 + x$ is the invariant (constant) curve for

(a)
$$x \frac{d^2 y}{dx^2} = 3y^2 \frac{dy}{dx} - 1 - \frac{dy}{dx}$$

(a)
$$x \frac{d^2 y}{dx^2} = 3y^2 \frac{dy}{dx} - 1 - \frac{dy}{dx}$$
 (b) $x \frac{d^2 y}{dx^2} = 1 - 3y^2 \frac{dy}{dx} + \frac{dy}{dx}$

(c)
$$\frac{d^2y}{dx^2} = 3y^2 \frac{dy}{dx} - 1 - \frac{dy}{dx}$$

(d)
$$x \frac{d^2 y}{dx^2} = 3y^2 \frac{dy}{dx} - 1 - x \frac{dy}{dx}$$

Q54. The curve $y = e^{x} + e^{-x}$ satisfies the differential equation

(a)
$$\frac{dy}{dx} = y$$

(b)
$$\frac{dy}{dx} = -y$$

(c)
$$\frac{d^2y}{dx^2} = y$$

(a)
$$\frac{dy}{dx} = y$$
 (b) $\frac{dy}{dx} = -y$ (c) $\frac{d^2y}{dx^2} = y$ (d) $\frac{d^2y}{dx^2} = -y$

For the differential equation $y \frac{dy}{dx} + 2\cos(y) y = 1$, which of the following is true?

- (a) The differential equation is first-order linear and homogenous
- (b) The differential equation is first-order linear and non-homogenous
- (c) The differential equation is first-order nonlinear and homogenous
- (d) The differential equation is first-order nonlinear and non-homogenous

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q56. If $\tan a = \frac{1}{3}$ and $\tan b = \frac{1}{2}$, then a + b is

(a)
$$\frac{3\pi}{2}$$

(b)
$$\frac{3\pi}{4}$$

(c)
$$\frac{\pi}{2}$$

(d)
$$\frac{\pi}{4}$$

Q57. arc $\sin r = \theta$, then θ is

(a)
$$-i \operatorname{In} \left(\sqrt{1-r^2} + ir \right)$$

(b)
$$i \operatorname{In} \left(\sqrt{1-r^2} + ir \right)$$

(c)
$$-i \operatorname{In} \left(\sqrt{1-r^2} - ir \right)$$

(d)
$$i \operatorname{In} \left(\sqrt{1-r^2} - ir \right)$$

Which one of the following defines a function f for which f(-x) = -f(x)? Q58.

(a)
$$f(x) = x^2$$

(b)
$$f(x) = \sin x$$

(a)
$$f(x) = x^2$$
 (b) $f(x) = \sin x$ (c) $f(x) = \cos x$ (d) $f(x) = e^x$

(d)
$$f(x) = e^x$$

Q59. If $\log(a+ib) = (c+id)$, then

(a)
$$c = \log(\sqrt{a^2 + b^2}), d = \tan^{-1}(\frac{b}{a})$$
 (b) $c = \log(a^2 + b^2), d = \tan^{-1}(\frac{a}{b})$

(b)
$$c = \log(a^2 + b^2), d = \tan^{-1}(\frac{a}{b})$$

(c)
$$c = \log(\sqrt{a^2 + b^2})$$
, $d = \frac{1}{2} \tan^{-1}(\frac{b}{a})$ (d) $c = \log(a^2 + b^2)$, $d = \tan^{-1}(\frac{b}{a})$

(d)
$$c = \log(a^2 + b^2), d = \tan^{-1}(\frac{b}{a})$$

The real value of the function $\frac{F(z_1)}{F(z_2)}$ for $F(z) = z + |z|^2$ z, $z_1 = 3e^{i\frac{\pi}{2}}$ and $z_2 = 2e^{i\pi}$ is Q60.

$$(c) -2$$

Let the functions f and g have 6 and 3 roots, respectively. If all the roots of g are also O61. roots of f, then how many roots does the function $f \times g$ has?

One of the values of $(i)^{\frac{1}{3}}$ is Q62.

(a)
$$-i$$

For a right angled triangle if one of the angle is $\alpha \left(\alpha \neq \frac{\pi}{2}\right)$, the other angle is

(a)
$$\pi - \alpha$$

(b)
$$\alpha - \frac{\pi}{2}$$

(b)
$$\alpha - \frac{\pi}{2}$$
 (c) $\frac{\pi}{2} - \frac{\alpha}{2}$ (d) $\frac{\pi}{2} - \alpha$

(d)
$$\frac{\pi}{2} - \alpha$$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q64.	Consider the matrix $A(\theta) = \begin{cases} \sin(\theta) \\ \cos(\theta) \end{cases}$	$\begin{array}{cc} -\cos(\theta) \\ \sin(\theta) \end{array}$	and $\rho = A(\theta) A(\phi) $. For $\phi = \theta - \frac{\pi}{2}$ the	he
	value of ρ is			

(a) 2

(b) 1

- (c) 0
- (d) -1
- The points of intersection of $f = \sin^2(2\theta)$ and $f = \cos^2(2\theta)$ between $\frac{-\pi}{2}$ to $\frac{\pi}{2}$ are Q65.

- (a) $\left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$ (b) $\left(\frac{-3\pi}{8}, \frac{3\pi}{8}\right)$ (c) $\left(\frac{-\pi}{8}, \frac{\pi}{8}\right)$ (d) $\left(\frac{-3\pi}{8}, \frac{3\pi}{8}\right)$
- A gun moving at a speed 30 m/sec fires at an angle 30° with a velocity 150 m/s relative O66. to the gun. The distance between the gun and projectile when projectile hits the ground (g = 10 m/sec) is
 - (a) 1850 m
- (b) 1750 m
- (c) 1950 m
- (d) 1050 m
- The displacement of particle executing simple harmonic motion obeys the equation O67. $y = 1.60 \sin(1.3 t)$. Here, y is in centimeters and t is in seconds. The magnitude of the velocity at t = 0 is
 - (a) v = 1.08 m/s

- (b) v = 0.08 m/s (c) v = 3.08 m/s (d) v = 2.08 m/s
- One spring has force constant 200 Nm⁻¹, another has force constant 500 Nm⁻¹. If they O68. are joined in series, the force constant will be nearest to
 - (a) $700 \,\text{N/m}$
- (b) 300 N/m
- (c) 143 N/m
- (d) 100 N/m
- Q69. A particle moves in a straight line so that its distance at time t from a fixed point of the line is $8t-3t^2$. What is the total distance covered by the particle between t=1 and t = 2?
 - (a) 1

- (c) $\frac{5}{2}$
- (d) 2
- The degrees of freedom of the particle constrained to move only on surface of the sphere O70. is
 - (a) 2

- (b) 3
- (c) 0

(d) 1

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q71. A body whose three principal moments of inertia are all equal, that is $I_1 = I_2 = I_3$, is called as
 - (a) asymmetrical top

(b) symmetrical top

(c) spherical top

- (d) None of the above
- What is the necessary condition for a force \vec{F} to be conservative? Q72.
 - (a) $\vec{\nabla} \cdot \vec{F} = 0$
- (b) $\vec{\nabla} \times \vec{F} = 0$
- (c) $\vec{\nabla} \cdot \vec{F} \neq 0$
- (d) $\vec{\nabla} \times \vec{F} \neq 0$
- When a rigid body rotates about an axis and the external torque is zero, then for that body Q73. the following is a constant
 - (a) Angular velocity

(b) Moment of inertia

(c) Linear momentum

- (d) Angular momentum
- If a body has mass m, velocity at centre of mass v_c , moment of inertia I_c and rotational Q74. velocity ω , then total kinetic energy is
 - (a) $\frac{1}{2}mv_c^2$

(b) $\frac{1}{2}I_c\omega^2$

(c) $\frac{1}{2}I_c\omega^2 - \frac{1}{2}mv_c^2$

- (d) $\frac{1}{2}I_c\omega^2 + \frac{1}{2}mv_c^2$
- The angular momentum of a rotational body, with angular velocity ω and moment of O75. inertia I, is given by
 - (a) $\frac{1}{2}I\omega$
- (b) $I\omega$
- (c) $\frac{1}{2}I\omega^2$ (d) $I\omega^2$

- Q76. In metals the skin depth for electromagnetic waves
 - (a) increases with increase in frequency
 - (b) decreases with increase in frequency
 - (c) does not depend on frequency
 - (d) increases or decreases with frequency depending on the conductivity of metal

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- A plane polarized electromagnetic wave with \vec{E} vector parallel to the plane of incidence Q77. is incident from air to glass. It is found that $\theta_i + \theta_t = 90^\circ$, where θ_i is the angle of incidence and θ_t is the angle of transmittance then
 - (a) there will not be any reflected wave
 - (b) the reflected wave will be in a direction perpendicular to transmitted wave
 - (c) the reflected wave will be in a direction perpendicular to incident wave
 - (d) the reflected wave will be perpendicular to the refrated wave
- The average value of the Poynting vector for a plane polarized sinusoidal electromagnetic Q78. wave in free space is given by

(a)
$$\frac{1}{2}\varepsilon_0 E^2$$

(b)
$$\frac{1}{2}\mu_0 B_0^2$$

(a)
$$\frac{1}{2}\varepsilon_0 E^2$$
 (b) $\frac{1}{2}\mu_0 B_0^2$ (c) $\frac{1}{2}\frac{\mu_0 B^2}{C}$ (d) $\frac{1}{2}C\varepsilon_0 E_0^2$

(d)
$$\frac{1}{2}C\varepsilon_0 E_0^2$$

 E_0 and B_0 are the peak values of the amplitudes of electric and magnetic field.

- The dielectric constant of any dielectric materials for electromagnetic waves Q79.
 - (a) increases with frequency
 - (b) is independent of frequency
 - (c) decreases with frequency
 - (d) decreases with frequency in radio frequency range but increases with frequency in optical range
- Q80. How many 2 input NAND gates will be required to realize the operation of 3 input OR gates?

Q81. The simplified Boolean expression in POS for the Boolean expression $Y = AB\overline{C} + A\overline{B}C + \overline{A}BC + ABC$ is given by

(a)
$$Y = AB + BC + AC$$

(b)
$$Y = (A+B)\cdot (B+C)\cdot (C+A)$$

(c)
$$Y = (\overline{A} + B) \cdot (\overline{B} + C) \cdot (\overline{C} + A)$$
 (d) $Y = \overline{A}B + \overline{B}C + \overline{C}A$

(d)
$$Y = \overline{A}B + \overline{B}C + \overline{C}A$$

- Two 4-bit numbers can be added by using Q82.
 - (a) 4 full addres

- (b) 8 half addres
- (c) 3 full adder and 1 half adder
- (d) 1 full adder and 3 half adder

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q83. Which one of the following is not the basic logic gate?
 - (a) AND
- (b) OR
- (d) XOR
- Q84. The wavelength of an electromagnetic wave of frequency wave $10GH_3$ traveling in a medium with $\mu = 4\pi \times 10^{-7}$ H/m and $\varepsilon = \frac{1}{36\pi} \times 10^{-9}$ F/m will be
 - (a) 3 cm
- (b) 3 metre
- (c) 30 cm
- (d) 30 metre
- A material has $\sigma = 10^{-2} \, \text{s/m}$ and $\varepsilon = 2\varepsilon_0$ at what frequency will the conduction current Q85. be equal to the displacement current?
 - (a) 6.3×10^6 Hz
- (b) $9.1 \times 10^7 \text{ Hz}$ (c) $3.1 \times 10^8 \text{ Hz}$
- (d) 5.3×10^9 Hz
- Which one of the following is not a Maxwell's equation of electromagnetic? Q86.
 - (a) $\oint_{c} \overrightarrow{D} \cdot \overrightarrow{ds} = q$

- (c) $\oint \vec{H} \cdot \vec{dl} = \int_{s} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot \vec{ds}$
- (b) $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$ (d) $\oint E \cdot d\vec{l} = \frac{\partial}{\partial t} \int_s \vec{B} \cdot d\vec{s}$
- Q87. For plane electromagnetic waves in vacuum which of the following statements is not true?
 - (a) These are transverse in natures
 - (b) Electric and magnetic field waves are in phase
 - (c) There is a phase difference of 90° between electric and magnetic fields
 - (d) $E \times H$ points in the direction of propagation of electromagnetic wave
- Q88. The de Broglie wavelength of an electron moving with velocity 10 m/sec is (given $h = 6.63 \times 10^{-34} J - \text{sec}, m_e = 9.1 \times 10^{-31} kg$
 - (a) $3.6 \times 10^{-11} m$

(b) $1.44 \times 10^{-10} m$

(c) $11.0 \times 10^{-11} m$

- (d) $7.3 \times 10^{-11} m$
- If we pour some drops of water between the plate and lens in Newton's ring experiment, Q89. then the rings will
 - (a) increase in diameter

(b) decrease in diameter

(c) become elliptical

(d) become invisible

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q90. Two polarizing sheets have directions such that the transmitted light has maximum intensity I_{max} . Through what angle must either sheet be turried so that the intensity of transmitted light becomes $\frac{I_{\text{max}}}{2}$?
 - (a) $\pm 30^{\circ}$
- (b) $\pm 60^{\circ}$
- (c) $\pm 45^{\circ}$
- (d) $\pm 90^{\circ}$
- Q91. A circularly polarised light can be distinguished from unpolarized light by passing it through
 - (a) Nicol prism

(b) polarizing sheet

(c) half-wave plate

- (d) quarter-wave plate
- If mirror M_2 in Michelson interferometer is moved through 0.233 mm, then 792 fringes Q92. are counted. The wavelength of light is
 - (a) 715 nm
- (b) 656 nm
- (c) 588 nm
- (d) 536 nm
- If $C_{r.m.s.}\overline{C}$ and C_m denote the r.m.s. speed, average speed and most probable speed of Q93. molecules in a gas obeying Maxwellian distribution of molecular speeds, then
 - (a) $C_m > \overline{C} > C_{rm}$

(b) $\overline{C} > C_{r.m.s.} > C_m$

(c) $C_{rms} > \overline{C} > C_m$

- (d) $C_{r,m,s} > C_m > \overline{C}$
- Which one of the following is not the correct Maxwell's thermodynamic equations? O94.
 - (a) $\left(\frac{\partial S}{\partial V}\right) = \left(\frac{\partial P}{\partial T}\right)$

(b) $\left(\frac{\partial S}{\partial P}\right)_{T} = \left(\frac{\partial V}{\partial T}\right)_{T}$

(c) $\left(\frac{\partial T}{\partial V}\right) = \left(\frac{\partial P}{\partial S}\right)$

- (d) $\left(\frac{\partial T}{\partial P}\right)_{s} = \left(\frac{\partial V}{\partial S}\right)_{s}$
- In placing a thin sheet of mica of thickness 12×10^{-5} cm in the path of the one of the Q95. interfering beams in Young's double slit experiment the central fringe shifts equal to a fringe width. If the wavelength of light is $\lambda = 600 \, \text{nm}$, then the refractive index of mica is
 - (a) $\mu = 1.30$
- (b) $\mu = 1.48$ (c) $\mu = 1.56$ (d) $\mu = 1.50$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

(b) $\frac{f\lambda}{2a}$ (c) $\frac{a}{2f\lambda}$ (d) $\frac{2a}{f\lambda}$

(b) increases

(d) fluctuates

(c) 325°K

If in defining the specific heat temperature is represented in ${}^{\circ}F$ instead of ${}^{\circ}C$, then the

If C_p and C_v are the molar specific heats of a gas at constant pressure and constant

A Carnot engine has an efficiency of 40% and a heat sink temperature of 27°C. What

volume respectively. The ratio of adiabatic and isothermal moduli of elasticity will be

(a) $\frac{C_p - C_v}{C_p}$ (b) $\frac{C_p - C_v}{C_v}$ (c) $\frac{C_v}{C_p}$

should be the temperature of heat sink so that the efficiency becomes 50%?

Q100. Total time of light of a projectile laundied with velocity u at angle θ with the

(b) 250°K

In Fraunhofer diffraction of a single slit the width of the outral maxima is

(a) $\frac{u\sin\theta}{g}$ (b) $\frac{2u\cos\theta}{g}$ (c) $\frac{2u\sin\theta}{g}$ (d) $\frac{u\cos\theta}{g}$ Q101. A bullet of mass m travelling with velocity v gets embedded into a sand bag of mass M suspended by an instretchable string. The loss of kinetic energy in the process would be (a) $\frac{1}{2}\frac{m^2v^2}{(M+m)}$ (b) $\frac{1}{2}\frac{m^2v^2}{(M+m)}$ (c) $\frac{1}{2}\frac{(M+m)^2v^2}{m}$ (d) $\frac{1}{2}\frac{mM}{(m+M)}v^2$ Q102. The largest and the smallest distance of the earth from the sun in its orbit are r_1 and r_2 respectively. Its distance from the sun at the perpendicular to the major axis of the orbit passing through the sun would be (a) $\frac{2r_1r_2}{(r_1+r_2)}$ (b) $\frac{(r_1+r_2)}{2r_1r_2}$ (c) $\frac{r_1+r_2}{2}$ (d) $\frac{r_1-r_2}{2}$

Head office

Q96.

Q97.

Q98.

O99.

value of specific heat

(c) remain unchanged

(a) decreases

(a) $200^{\circ}K$

horizontala is

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

(d) 350°K

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q103.	If the noise level in Varanasi is 80 dB and that in Chandigarh is 40 dB, then the intensity					
	of noise in Varanasi exceeds that in Chandigarh by a factor of					
	(a) 2	(b) 2 ⁴	(c)	104	(d) 20	
Q104.	When an intense bear	When an intense beam of laser light goes from air into water there is no change in its				
	(a) intensity	(b) frequency	(c)	velocity	(d) wavelength	
Q105.	The magnification of the image by a concave mirror of focal length f is m . If the image is real the distance of the object from the mirror would be				h f is m . If the image is	
	(a) $(m-1)f$	(b) $(m+1)f$	(c)	$\frac{m+1}{m}f$	(d) $\left(\frac{m-1}{m}\right)f$	
Q106.	. If the half-life of a radio active substance is 3 days, then by what factor would its activity					
	reduce in 9 days?					
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	(c)	1/8	(d) $\frac{7}{8}$	
Q107.	A system of three identical condensers will store maximum energy of					
	(a) two are connected in series and third in parallel to them					
	(b) two are connected in parallel and third in series with the combination					
	(c) all three connected in series					
	(d) all three connecte	ed in parallel	#			
Q108.	A mass spectrograph is used for the determination of					
	(a) specific charge of an ion		(b) atomic mass			
	(c) spectral lines of is	sotopes	(d)	atomic charge		
Q109.	The series of spectral lines in the spectrum of hydrogen atom that lies partly in the				that lies partly in the	
	ultraviolet and partly in the visible region is called					
	(a) Balmer series	(b) Lyman series	(c)	Brackett series	(d) Paschen series	
Q110.	Neglecting the relativistic effect the wavelength associated with electron of kinetic				ith electron of kinetic	
	energy E is proportional to					
	(a) \sqrt{E}	(b) $\frac{1}{\sqrt{E}}$	(c)	E^2	(d) $\frac{1}{E^2}$	

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q111. The unit for measurement of man's exposure to nuclear radiation is
 - (a) Curie
- (b) Becquerel
- (c) Rutherford
- (d) Fermi
- Q112. A metallic wire of length L hanging from the roof is stretched by an small amount l when a body of mass m is attached to its free end. The mechanical energy stored in the wire is
 - (a) $\frac{mgl}{I}$
- (b) $\frac{mgl^2}{I}$ (c) $\frac{mgl}{2}$ (d) $\frac{mgl^2}{2I}$
- Q113. Two uniform circular discs A and B of equal masses and thicknesses are made of materials of densities ρ_A and ρ_B respectively. If their moment of inertia about an axis passing through the center and normal to the circular faces are I_A and I_B respectively, then
- (a) $\frac{I_A}{I_B} = \frac{\rho_A}{\rho_B}$ (b) $\frac{I_A}{I_B} = \frac{\rho_B}{\rho_A}$ (c) $\frac{I_A}{I_B} = \left(\frac{\rho_A}{\rho_B}\right)^2$ (d) $\frac{I_A}{I_B} = \left(\frac{\rho_B}{\rho_A}\right)^2$
- Q114. The main use of a voltage series negative feedback amplifier is as a
 - (a) power amplifier
 - (b) current amplifier
 - (c) impedance matching device
 - (d) low input impedance voltage amplifier
- Q115. In RC coupled transistor amplifier the upper cut off in frequency response is obtained due to
 - (a) coupling capacitance

(b) blocking capacitance

(c) by pass capacitance

- (d) junction capacitance
- Q116. The width of the depletion region layer of a P-N junction diode
 - (a) decreases with increasing doping concentration
 - (b) increases with increasing doping concentration
 - (c) is independent of doping concentration
 - (d) decrease with increasing reverse bias

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q117. Avalanche break down in Zener diode is a phenomena primarily caused by ionization of immobile ions.
 - (a) due to high electric field
 - (b) due to collision with high velocity minorly charge carriers
 - (c) due to collision with high velocity majority charge carriers
 - (d) due to tunneling of charge carriers
- Q118. A circuit having an inductance of $\frac{1}{2}$ Henry and resistance of 100 ohms is connected to

AC power supply at 50 Hz frequency. The reactance and impedance of the circuit is

(a) 100Ω , 100Ω

(b) 141.1Ω , 100Ω

(c) 100Ω , 141.1Ω

- (d) 141.1Ω , 141.1Ω
- Q119. A rectangular wave having cross-sectional area 6 cm × 4 cm is operating at a frequency 7.56 Hz in dominant mode. The guide wavelength will be
 - (a) 4.24 cm
- (b) 2.25 cm
- (c) 4.5 cm
- (d) 3.16 cm
- Q120. The change in the boiling point of water when the pressure is increased by 10⁶ dynes/cm² on assuming normal boiling point 100 °C, specific volume of steam 1677 cm³/gm and latent heat of vaporization of water 540 cal/gm, will be about
 - (a) 28 °C
- (b) 12 °C
- (c) 15 °C
- (d) 40 °C
- Q121. Indicate the false T dS equation from the equations given below

(a)
$$T dS = C_V dT + T \left(\frac{\partial S}{\partial V} \right)_T dV$$
 (b) $T dS = C_V dT + T \left(\frac{\partial P}{\partial T} \right)_V dV$

(b)
$$T dS = C_V dT + T \left(\frac{\partial P}{\partial T} \right)_V dV$$

(c)
$$T dS = C_P dT + T \left(\frac{\partial S}{\partial P} \right)_T dP$$

(d)
$$T dS = C_P dT + T \left(\frac{\partial V}{\partial T}\right)_P dP$$

- Q122. The Bernoulli's theorem is based on the principle of
 - (a) conservation of momentum
- (b) conservation of energy

(c) conservation of mass

(d) conservation of velocity

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Head o	office		Bra	anch office	
	(a) 10.7 p.m.	(b) 12.425 p.m.	(c) 11.25 p.m.	(d) 9.3 p.m.	
	scattered at 45°				
	wavelength present in the scattered X-rays it 14.9 p.m. Find the wavelength of the X-rays				
Q130.	X-rays of 10.0 p.m. are scattered from a target in all directions and the maximum				
	(d) the laser light can be hardly converged				
	(c) two independent Laser sources can produce interference				
	(b) these are monochromatic sources of light				
Q129.	Indicate the false statement about Lasers				
	(a) 2.2 poise	(b) 1.1 poise	(c) 2.2 centipoise	(d) 1.1 centipoise	
	density of air to be ne	egligible			
at the rate of 0.36 m/sec. Find the coefficient of viscosity of solution assuming					
Q128.	Q128. An air bubble of diameter 2 mm rises steadily through a solution of density 175			of density 1750 kg/m ³	
	(a) 21000 km	(b) 5225 km	(c) 10500 km	(d) 15725 km	
	be				
	height of the satellite whose orbital time period is 3 hours, from the center of earth would				
Q127.	If the height of the go	eostationary satellite fi	rom the center of earth	n is 42000 km, then the	
	(c) Pressure		(d) Helmholtz free e	nergy	
	(a) Entropy		(b) Enthalpy		
Q126.	Which of the follow	wing thermodynamic	parameter remains	constant during Joule-	
	(c) energy		(d) linear momentum	1	
	(a) angular momentu	m	(b) power		
Q125.	,	constant is equivalent t	• •		
-	(a) rectifier	(b) modulator	(c) demodulator	(d) oscillator	
Q124. <i>P-N</i> junction diode cannot be used as a			.,		
	(c) conservation of cl		(d) conservation of n		
Q123.	(a) conservation of ea		(b) conservation of r	1	
O123.	Kirchhoff's law of junctions in electrical circuits is based on the principle of				

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q131.	1. The wave particle duality was demonstrated by the				
	(a) Stern-Gerlach experiment	(b) Davisson-Germer experiment			
	(c) Franck-Hertz experiment	(d) Michelson-Morley experiment			
Q132.	Raman scattering is a quantum mechanical process involving				
	(a) one photon	(b) one photon and one electron			
	(c) two photons	(d) two photon and one electron			
Q133.	Planck's radiation formula reduces to				
	(a) Rayleigh-Jeans formula at low frequencies				
	(b) Rayleigh-Jeans formula high frequencies				
	(c) Wien's displacement formula at low ten	nperature			
	(d) Rayleigh-Jeans formula at low temperat	ure			
Q134.	unequal amplitudes with their planes of				
	polarization perpendicular to each other on	superposition give rise to			
	(a) circularly polarized light	(b) plane polarized light			
	(c) unpolarised light	(d) elliptically polarized light			
Q135.	135. 10 gm water at $0^{\circ}C$ is heated and transformed to 10 gm steam at $100^{\circ}C$. If the				
heat of evaporation at $100 ^{\circ}C$ is 538 cal/gm, then the change in entropy is					
	(a) 14.45 cal/°K (b) 17.54 cal/°K	(c) 13.56 cal/°K (d) 18.65 cal/°K			
Q136. If for any thermodynamic system $\oint \phi dse \neq 0$ for all cyclic irreversible proc					
	the variable ϕ is				
	(a) internal energy <i>u</i>	(b) pressure <i>p</i>			
	(c) temperature <i>T</i>	(d) entropy S			
Q137.	If the frame around which wire is wound in a moving coil galvanometer is metallic, then				
	its				
	(a) sensitivity is increased	(b) hysteresis is decreased			
	(c) damping is increased	(d) time period of oscillation is decreased			

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q138.	When white light source is used in Young's double slit experiment the colour of first					
	bright fringes on both sides of the central dark fringe will be					
	(a) violet	(b) blue	(c) green	(d) red		
Q139.	A tuning fork of freq	uency 512 Hz is vibra	ted with a sonometer v	vire and 6 beats per sec		
	are heard. The beat	frequency reduces if t	he tension in the strin	g of sonometer wire is		
	slightly decreased. The original frequency of vibration of sonometer wire is					
	(a) 500	(b) 518	(c) 506	(d) 524		
Q140.	For a van der Waals'	gas the Joule-Thomson	n coefficient is given b	y		
	(a) $\frac{1}{C_P} \left[b - \frac{2a}{RT} \right]$	(b) $\frac{1}{C_{v}} \left[\frac{2a}{RT} - b \right]$	(c) $\frac{1}{C_P} \left[\frac{2a}{RT} - b \right]$	(d) $\frac{1}{C_v} \left[b - \frac{2a}{RT} \right]$		
Q141.	The Fourier series					
	$F(x) = \frac{3}{2} + \frac{6}{\pi} \left[\sin \frac{\pi x}{5} + \frac{1}{3} \sin \frac{3\pi x}{5} + \frac{1}{5} \sin \frac{\sin 5\pi x}{5} + \cdots \right]$					
	represents a square wave of					
	(a) amplitude 3 and t	ime period 5	(b) amplitude $\frac{3}{2}$ and	time period 10		
	(c) amplitude 3 and t	time period 10	(d) amplitude $\frac{3}{2}$ and	time period 5		
Q142.	2. A reversible heat engine converts $\frac{1}{6}$ th heat, which it absorbs from source into useful					
	work. When the temperature of the sink is reduced by $60^{\circ}C$, its efficiency is doubled.					
	Then the temperature (a) 240 K	(b) 300 K	(c) 480 K	(d) 360 K		
01/13	• •			` '		
Q143.	3. A diffraction grating is illuminated by a Laser light of wavelength 500 nm. If the second order spectral line is observed at 30°, then the number of lines per centimeter of grating					
	is (a) 5000	(b) 6000	(c) 4000	(d) 3000		
0144	• •	sonance circuit the pov	` ,	` '		
Υ177 .	(a) infinity	(b) zero	(c) half	(d) unity		
	(a) mining	(0) 2010	(c) nun	(a) unity		

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q145. A bridge rectifier is preferred over an ordinary full-wave rectifier because
 - (a) its rectification efficiency is high
 - (b) its ripple factor is small
 - (c) its transformer does not require center tap secondary
 - (d) its peak inverse voltage is low
- Q146. Indicate the false statement regarding the early effect in transistor
 - (a) base current decreases with increasing $\left|V_{CB}\right|$
 - (b) emitter current increase with increas $\left|V_{CB}\right|$
 - (c) α decreases with increasing $|V_{CB}|$
 - (d) β increases with increasing $|V_{\rm CB}|$
- Q147. What will be the maximum wave length of light that will cause the photoelectrons to be emitted from sodium target whose work function is 23 eV $(h = 4.14 \times 10^{-15} \text{ eV} \times \text{sec})$?
 - (a) 270 nm
- (b) 675 nm
- (c) 810 nm
- (d) 540 nm
- Q148. Indicate the false statement about the conclusions drawn from Michelson-Morley experiment
 - (a) hypothetical ether does not exist
 - (b) all motions are relative to a universal from of reference
 - (c) the speed of light is same for all observers
 - (d) all motions are relative to a specified frame of reference
- Q149. Gibbs' free energy G is defined as
 - (a) G = u + PV + TS

(b) u - PV + TS

(c) G = u + PV - TS

(d) u - PV - TS

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q150. The radius of gyration of a thin uniform rod of mass M = 100 gm and length l = 1 metre about an axis passing through its center of gravity and perpendicular of its length is
 - (a) $k = \frac{1}{2\sqrt{3}}$ metre

(b) $k = \frac{1}{3\sqrt{3}}$ metre

(c) $k = \frac{1}{4\sqrt{3}}$ metre

(d) $k = \frac{1}{6\sqrt{3}}$ metre

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**