fiziks
t!క! ${ }^{2}$

NET PHYSICS JUNE-2013

PART-A

Q1. There is an equilateral triangle in the XY plane with its centre at the origin. The distance of its sides from the origin is 3.5 cm . The area of its circumcircle in cm^{2} is
(a) 38.5
(b) 49
(c) 63.65
(d) 154

Q2. A sphere of iron of radius $\mathrm{R} / 2$ fixed to one end of a string was lowered into water in a cylindrical container of base radius R to keep exactly half the sphere dipped. The rise in the level of water in the container will be

(a) $\mathrm{R} / 3$
(b) R/4
(c) $\mathrm{R} / 8$
(d) R/12

Q3. A crystal grows by stacking of unit cells of $10 \times 20 \times 5 \mathrm{~nm}$ size as shown in the diagram given below. How many unit cells will make a crystal of $1 \mathrm{~cm}^{3}$ volume?

Unit Cell (not to scale)

Crystal (not to scale)
(a) 10^{6}
(b) 10^{9}
(c) 10^{12}
(d) 10^{18}

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q4. What is the value of $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots$. to ∞ ?
(a) $2 / 3$
(b) 1
(c) 2
(d) ∞

Q5. A solid cylinder of basal area A was held dipped in water in a cylindrical vessel of basal area $2 A$ vertically such that a length h of the cylinder is immersed. The lower tip of the cylinder is at a height h from the base of the vessel. What will be the height of water in the vessel when the cylinder is taken out?

(a) $2 h$
(b) $\frac{3}{2} h$
(c) $\frac{4}{3} h$
(d) $\frac{5}{4} h$

Q6. Of all the triangles that can be inscribed in a semicircle of radius R with the diameter as one side, the biggest one has the area
(a) R^{2}
(b) $R^{2} \sqrt{2}$
(c) $R^{2} \sqrt{3}$
(d) $2 R^{2}$

Q7. Choose the largest number:
(a) 2^{500}
(b) 3^{400}
(c) 4^{300}
(d) 5^{200}

Q8. A daily sheet calendar of the year 2013 contains sheets of $10 \times 10 \mathrm{~cm}$ size. All the sheets of the calendar are spread over the floor of a room of $5 \mathrm{~m} \times 7.3 \mathrm{~m}$ size. What percentage of the floor will be covered by these sheets?
(a) 0.1
(b) 1
(c) 10
(d) 100

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q9. How many rectangles (which are not squares) are there in the following figure?
(a) 56
(b) 70
(c) 86
(d) 100

Q10. Define $a \otimes b=\operatorname{lcm}(a, b)+\operatorname{gcd}(a, b)$ and $a \oplus b=a^{b}+b^{a}$. What is the value of $(1 \oplus 2) \otimes(3 \oplus 4)$? Here $l c m=$ least common multiple and gcd $=$ greatest common divisor.
(a) 145
(b) 286
(c) 436
(d) 572

Q11. A square pyramid is to be made using a wire such that only one strand of wire is used for each edge. What is the minimum number of times that the wire has to be cut in order to make the pyramid?
(a) 3
(b) 7
(c) 2
(d) 1

Q12. A crow is flying along a horizontal circle of radius R at a height R above the horizontal ground. Each of a number of men on the ground found that the angular height of the crow was a fixed angle $\theta\left(<45^{\circ}\right)$ when it was closest to him. Then all these men must be on a circle on the ground with a radius
(a) $R+R \sin \theta$
(b) $R+R \cos \theta$
(c) $R+R \tan \theta$
(d) $R+R \cot \theta$

Q13. How many pairs of positive integers have gcd 20 and 1 cm 600 ? $(\mathrm{gcd}=$ greatest common divisor; $1 \mathrm{~cm}=$ least common multiple $)$
(a) 4
(b) 0
(c) 1
(d) 7

Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

fiziks

Q14. During an evening party, when Ms. Black, Ms. Brown and Ms. White met, Ms. Brown remarked, "it is interesting that our dresses are white, black or brown, but for each of us the name does not match the colour of the dress!". Ms. White replied, "But your white dress does not suit you!". Pick the correct answer
(a) Ms. White's dress was brown
(b) Ms. Black's dress was white
(c) Ms. White's dress was black
(d) Ms. Black's dress was black

Q15. Two integers are picked at random from the first 15 positive integers without replacement. What is the probability that the sum of the two numbers is 20 ?
(a) $\frac{3}{4}$
(b) $\frac{1}{21}$
(c) $\frac{1}{105}$
(d) $\frac{1}{20}$

Q16. Identify the next figure in the sequence

(a)

(b)

(c)

(d)

Q17. In a customer survey conducted during Monday to Friday, of the customers who asked for child care facilities in super markets, 23% were men and the rest, women. Among them 19.9% of the women and 8.8% of the men were willing to pay for the facilities.
A. What is the ratio of the men to women customers who wanted child care facilities?
B. If the survey had been conducted during the weekend instead, how will the result change?

With the above data,
(a) Only A can be answered
(b) Only B can be answered
(c) Both A and B can be answered
(d) Neither A nor B can be answered

Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16
fiziks
t!క! ${ }^{2}$

Q18. The map given below shows contour lines which connect points of equal ground surface elevation in a region. Inverted ' V ' shaped portions of contour lines represent a valley along which a river flows. What is the downstream direction of the river?

(a) North
(b) South
(c) East
(d) West

Q19. During a summer vacation, of 20 friends from a hostel, each wrote a letter to each of all others. The total number of letters written was
(a) 20
(b) 400
(c) 200
(d) 380

Q20. A person has to cross a square field by going from A to C. The person is only allowed to move towards the east or towards the north or use a combination of these movements. The total distance traveled by the person
(a) depends on the length of each step
(b) depends on the total number of steps
(c) is different for different paths

(d) is the same for all paths

Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

PART-B

Q21. Two identical bosons of mass m are placed in a one-dimensional potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$. The bosons interact via a weak potential,

$$
V_{12}=V_{0} \exp \left[-m \Omega\left(x_{1}-x_{2}\right)^{2} / 4 \hbar\right]
$$

where x_{1} and x_{2} denote coordinates of the particles. Given that the ground state wavefunction of the harmonic oscillator is $\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{m o x^{2}}{2 \hbar}}$. The ground state energy of the two-boson system, to the first order in V_{0}, is
(a) $\hbar \omega+2 V_{0}$
(b) $\hbar \omega+\frac{V_{0} \Omega}{\omega}$
(c) $\hbar \omega+V_{0}\left(1+\frac{\Omega}{\omega}\right)^{-\frac{1}{2}}$
(d) $\hbar \omega+V_{0}\left(1+\frac{\omega}{\Omega}\right)$

Q22. Ten grams of ice at $0^{\circ} \mathrm{C}$ is added to a beaker containing 30 grams of water at $25^{\circ} \mathrm{C}$. What is the final temperature of the system when it comes to thermal equilibrium? (The specific heat of water is $1 \mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{C}$ and latent heat of melting of ice is $80 \mathrm{cal} / \mathrm{gm}$)
(a) $0^{\circ} \mathrm{C}$
(b) $7.5^{\circ} \mathrm{C}$
(c) $12.5^{\circ} \mathrm{C}$
(d) $-1.25^{\circ} \mathrm{C}$

Q23. A vessel has two compartments of volume V_{1} and V_{2}, containing an ideal gas at pressures p_{1} and p_{2}, and temperatures T_{1} and T_{2} respectively. If the wall separating the compartments is removed, the resulting equilibrium temperature will be
(a) $\frac{p_{1} T_{1}+p_{2} T_{2}}{p_{1}+p_{2}}$
(b) $\frac{V_{1} T_{1}+V_{2} T_{2}}{V_{1}+V_{2}}$
(c) $\frac{p_{1} V_{1}+p_{2} V_{2}}{\left(p_{1} V_{1} / T_{1}\right)+\left(p_{2} V_{2} / T_{2}\right)}$
(d) $\left(T_{1} T_{2}\right)^{1 / 2}$

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q24. For temperature $T_{1}>T_{2}$, the qualitative temperature dependence of the probability distribution $F(v)$ of the speed v of a molecule in three dimensions is correctly represented by the following figure:
(a)

(b)

(c)

(d)

Q25. A system of non-interacting spin- $1 / 2$ charged particles are placed in an external magnetic field. At low temperature T, the leading behavior of the excess energy above the ground state energy, depends on T as: (c is a constant)
(a) $c T$
(b) $c T^{3}$
(c) $e^{-c / T}$
(d) c (is independent of T)

Q26. The acceleration due to gravity g is determined by measuring the time period T and the length L of a simple pendulum. If the uncertainties in the measurements of T and L are ΔT and ΔL respectively, the fractional error $\Delta g / g$ in measuring g is best approximated by
(a) $\frac{|\Delta L|}{L}+\frac{|\Delta T|}{T}$
(b) $\frac{|\Delta L|}{L}+\frac{|2 \Delta T|}{T}$
(c) $\sqrt{\frac{|\Delta L|^{2}}{L}+\frac{|\Delta T|^{2}}{T}}$
(d) $\sqrt{\left(\frac{\Delta L}{L}\right)^{2}+\left(\frac{2 \Delta T}{T}\right)^{2}}$

[^0]Branch office
Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

fiziks
t!!! ! 2

Q27. A silicon transistor with built-in voltage 0.7 V is used in the circuit shown, with $V_{B B}=9.7 \mathrm{~V}, R_{B}=300 \mathrm{k} \Omega, V_{C C}=12 \mathrm{~V}$ and $R_{C}=2 \mathrm{k} \Omega$. Which of the following figures correctly represents the load line and quiescent Q point?

(a)

(b)

(c)

(d)

Q28. If the analog input to an 8-bit successive approximation ADC is increased from 1.0 V to 2.0 V , then the conversion time will
(a) remain unchanged
(b) double
(c) decrease to half its original value
(d) increase four times

[^1]
Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16
fiziks
t!!! ! 2

Q29. The insulation resistance R of an insulated cable is measured by connecting it in parallel with a capacitor C, a voltmeter, and battery B as shown. The voltage across the cable dropped from 150 V to $15 \mathrm{~V}, 1000$ seconds after the switch S is closed. If the capacitance of the cable is $5 \mu F$ then its insulation resistance is approximately

(a) $10^{9} \Omega$
(b) $10^{8} \Omega$
(c) $10^{7} \Omega$
(d) $10^{6} \Omega$

Q30. The approximation $\cos \theta \approx 1$ is valid up to 3 decimal places as long as $|\theta|$ is less than: (take $180^{\circ} / \pi \approx 57.29^{\circ}$)
(a) 1.28°
(b) 1.81°
(c) 3.28°
(d) 4.01°

Q31. The area of a disc in its rest frame S is equal to 1 (in some units). The disc will appear distorted to an observer O moving with a speed u with respect to S along the plane of the disc. The area of the disc measured in the rest frame of the observer O is (c is the speed of light in vacuum)
(a) $\left(1-\frac{u^{2}}{c^{2}}\right)^{1 / 2}$
(b) $\left(1-\frac{u^{2}}{c^{2}}\right)^{-1 / 2}$
(c) $\left(1-\frac{u^{2}}{c^{2}}\right)$
(d) $\left(1-\frac{u^{2}}{c^{2}}\right)^{-1}$

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q32. A particle of charge e and mass m is located at the midpoint of the line joining two fixed collinear dipoles with unit charges as shown in the figure. (The particle is constrained to move only along the line joining the dipoles). Assuming that the length of the dipoles is much shorter than their separation, the natural frequency of oscillation of the particle is

(a) $\sqrt{\frac{6 e^{2} R^{2}}{\pi \varepsilon_{0} m d^{5}}}$
(b) $\sqrt{\frac{6 e^{2} R}{\pi \varepsilon_{0} m d^{4}}}$
(c) $\sqrt{\frac{6 e^{2} d^{2}}{\pi \varepsilon_{0} m R^{5}}}$
(d) $\sqrt{\frac{6 e^{2} d}{\pi \varepsilon_{0} m R^{4}}}$

Q33. A current I is created by a narrow beam of protons moving in vacuum with constant velocity \vec{u}. The direction and magnitude, respectively, of the Poynting vector \vec{S} outside the beam at a radial distance r (much larger than the width of the beam) from the axis, are
(a) $\vec{S} \perp \vec{u}$ and $|\vec{S}|=\frac{I^{2}}{4 \pi^{2} \varepsilon_{0}|\vec{u}| r^{2}}$
(b) $\vec{S} \|(-\vec{u})$ and $|\vec{S}|=\frac{I^{2}}{4 \pi^{2} \varepsilon_{0}|\vec{u}| r^{4}}$
(c) $\vec{S} \| \vec{u}$ and $|\vec{S}|=\frac{I^{2}}{4 \pi^{2} \varepsilon_{0}|\vec{u}| r^{2}}$
(d) $\vec{S} \| \vec{u}$ and $|\vec{S}|=\frac{I^{2}}{4 \pi^{2} \varepsilon_{0}|\vec{u}| r^{4}}$

Q34. If the electric and magnetic fields are unchanged when the potential \vec{A} changes (in suitable units) according to $\vec{A} \rightarrow \vec{A}+\hat{r}$, where $\vec{r}=r(t) \hat{r}$, then the scalar potential Φ must simultaneously change to
(a) $\Phi-r$
(b) $\Phi+r$
(c) $\Phi-\partial \mathrm{r} / \partial t$
(d) $\Phi+\partial \mathrm{r} / \partial t$

Q35. Consider an axially symmetric static charge distribution of the form,

$$
\rho=\rho_{0}\left(\frac{r_{0}}{r}\right)^{2} e^{-r / r_{0}} \cos ^{2} \varphi
$$

The radial component of the dipole moment due to this charge distribution is
(a) $2 \pi \rho_{0} r_{0}^{4}$
(b) $\pi \rho_{0} r_{0}^{4}$
(c) $\rho_{0} r_{0}^{4}$
(d) $\pi \rho_{0} r_{0}^{4} / 2$

Q36. In a basis in which the z-component S_{z} of the spin is diagonal, an electron is in a spin state

$$
\psi=\left(\frac{(1+i) / \sqrt{6}}{\sqrt{2 / 3}}\right)
$$

The probabilities that a measurement of S_{z} will yield the values $\hbar / 2$ and $-\hbar / 2$ are, respectively,
(a) $1 / 2$ and $1 / 2$
(b) $2 / 3$ and $1 / 3$
(c) $1 / 4$ and $3 / 4$
(d) $1 / 3$ and $2 / 3$

Q37. Consider the normalized state $|\psi\rangle$ of a particle in a one-dimensional harmonic oscillator:

$$
|\psi\rangle=b_{1}|0\rangle+b_{2}|1\rangle
$$

where $|0\rangle$ and $|1\rangle$ denote the ground and first excited states respectively, and b_{1} and b_{2} are real constants. The expectation value of the displacement x in the state $|\psi\rangle$ will be a minimum when
(a) $b_{2}=0,\left(b_{1}=1\right)$
(b) $b_{2}=\frac{1}{\sqrt{2}} b_{1}$
(c) $b_{2}=\frac{1}{2} b_{1}$
(d) $b_{2}=b_{1}$

Q38. A muon $\left(\mu^{-}\right)$from cosmic rays is trapped by a proton to form a hydrogen-like atom. Given that a muon is approximately 200 times heavier than an electron, the longest wavelength of the spectral line (in the analogue of the Lyman series) of such an atom will be
(a) $5.62 \AA$
(b) $6.67 \AA$
(c) $3.75 \AA$
(d) $13.3 \AA$

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

fiziks

Q39. The un-normalized wavefunction of a particle in a spherically symmetric potential is given by

$$
\psi(\vec{r})=z f(r)
$$

where $f(r)$ is a function of the radial variable r. The eigenvalue of the operator \vec{L}^{2} (namely the square of the orbital angular momentum) is
(a) $\hbar^{2} / 4$
(b) $\hbar^{2} / 2$
(c) \hbar^{2}
(d) $2 \hbar^{2}$

Q40. Given that

$$
\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}=e^{-t^{2}+2 x x}
$$

the value of $H_{4}(0)$ is
(a) 12
(b) 6
(c) 24
(d) -6

Q41. A unit vector \hat{n} on the $x y$-plane is at an angle of 120° with respect to \hat{i}. The angle between the vectors $\vec{u}=a \hat{i}+b \hat{n}$ and $\vec{v}=a \hat{n}+b \hat{i}$ will be 60° if
(a) $b=\sqrt{3} a / 2$
(b) $b=2 a / \sqrt{3}$
(c) $b=a / 2$
(d) $b=a$

Q42. With $z=x+i y$, which of the following functions $f(x, y)$ is NOT a (complex) analytic function of z ?
(a) $f(x, y)=(x+i y-8)^{3}\left(4+x^{2}-y^{2}+2 i x y\right)^{7}$
(b) $f(x, y)=(x+i y)^{7}(1-x-i y)^{3}$
(c) $f(x, y)=\left(x^{2}-y^{2}+2 i x y-3\right)^{5}$
(d) $f(x, y)=(1-x+i y)^{4}(2+x+i y)^{6}$

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q43. A planet of mass m and an angular momentum L moves in a circular orbit in a potential, $V(r)=-k / r$, where k is a constant. If it is slightly perturbed radially, the angular frequency of radial oscillations is
(a) $m k^{2} / \sqrt{2} L^{3}$
(b) $m k^{2} / L^{3}$
(c) $\sqrt{2} m k^{2} / L^{3}$
(d) $\sqrt{3} m k^{2} / L^{3}$

Q44. The Lagrangian of a particle of mass m moving in one dimension is given by

$$
L=\frac{1}{2} m \dot{x}^{2}-b x
$$

where b is a positive constant. The coordinate of the particle $x(t)$ at time t is given by: (in following c_{1} and c_{2} are constants)
(a) $-\frac{b}{2 m} t^{2}+c_{1} t+c_{2}$
(b) $c_{1} t+c_{2}$
(c) $c_{1} \cos \left(\frac{b t}{m}\right)+c_{2} \sin \left(\frac{b t}{m}\right)$
(d) $c_{1} \cosh \left(\frac{b t}{m}\right)+c_{2} \sinh \left(\frac{b t}{m}\right)$

Q45. A uniform cylinder of radius r and length l, and a uniform sphere of radius R are released on an inclined plane when their centres of mass are at the same height. If they roll down without slipping, and if the sphere reaches the bottom of the plane with a speed V, then the speed of the cylinder when it reaches the bottom is:
(a) $V \sqrt{\frac{14 r l}{15 R^{2}}}$
(b) $4 V \sqrt{\frac{r}{15 R}}$
(c) $\frac{4 V}{\sqrt{15}}$
(d) $V \sqrt{\frac{14}{15}}$

[^2]Branch office
Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

fiziks

PART-C

Q46. The components of a vector potential $A_{\mu} \equiv\left(A_{0}, A_{1}, A_{2}, A_{3}\right)$ are given by

$$
A_{\mu}=k(-x y z, y z t, z x t, x y t)
$$

where k is a constant. The three components of the electric field are
(a) $k(y z, z x, x y)$
(b) $k(x, y, z)$
(c) $(0,0,0)$
(d) $k(x t, y t, z t)$

Q47. In the Born approximation, the scattering amplitude $f(\theta)$ for the Yukawa potential

$$
V(r)=\frac{\beta e^{-\mu r}}{r}
$$

is given by: (in the following $b=2 k \sin \frac{\theta}{2}, E=\hbar^{2} k^{2} / 2 m$)
(a) $-\frac{2 m \beta}{\hbar^{2}\left(\mu^{2}+b^{2}\right)^{2}}$
(b) $-\frac{2 m \beta}{\hbar^{2}\left(\mu^{2}+b^{2}\right)}$
(c) $-\frac{2 m \beta}{\hbar^{2} \sqrt{\mu^{2}+b^{2}}}$
(d) $-\frac{2 m \beta}{\hbar^{2}\left(\mu^{2}+b^{2}\right)^{3}}$

Q48. If $\psi_{n l m}$ denotes the eigenfunciton of the Hamiltonian with a potential $V=V(r)$ then the expectation value of the operator $L_{x}^{2}+L_{y}^{2}$ in the state

$$
\psi=\frac{1}{5}\left[3 \psi_{211}+\psi_{210}-\sqrt{15} \psi_{21-1}\right]
$$

is
(a) $39 \hbar^{2} / 25$
(b) $13 \hbar^{2} / 25$
(c) $2 \hbar^{2}$
(d) $26 \hbar^{2} / 25$

Q49. An oscillating current $I(t)=I_{0} \exp (-i \omega t)$ flows in the direction of the y-axis through a thin metal sheet of area $1.0 \mathrm{~cm}^{2}$ kept in the $x y$-plane. The rate of total energy radiated per unit area from the surfaces of the metal sheet at a distance of 100 m is
(a) $I_{0} \omega /\left(12 \pi \varepsilon_{0} c^{3}\right)$
(b) $I_{0}^{2} \omega^{2} /\left(12 \pi \varepsilon_{0} c^{3}\right)$
(c) $I_{0}^{2} \omega /\left(12 \pi \varepsilon_{0} c^{3}\right)$
(d) $I_{0} \omega^{2} /\left(24 \pi \varepsilon_{0} c^{3}\right)$

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q50. Consider a two-dimensional infinite square well
$V(x, y)=\left\{\begin{array}{lll}0 & 0<x<a, & 0<y<a \\ \infty & \text { otherwise } & \end{array}\right.$
Its normalized Eigenfunctions are
$\psi_{n_{x}, n_{y}}(x, y)=\frac{2}{a} \sin \left(\frac{n_{x} \pi x}{a}\right) \sin \left(\frac{n_{y} \pi y}{a}\right)$
where $n_{x}, n_{y}=1,2,3, \ldots$..If a perturbation

$$
H^{\prime}=\left\{\begin{array}{cc}
V_{0} & 0<x<\frac{a}{2}, \quad 0<y<\frac{a}{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

is applied, then the correction to the energy of the first excited state to order V_{0} is
(a) $\frac{V_{0}}{4}$
(b) $\frac{V_{0}}{4}\left[1 \pm \frac{64}{9 \pi^{2}}\right]$
(c) $\frac{V_{0}}{4}\left[1 \pm \frac{16}{9 \pi^{2}}\right]$
(d) $\frac{V_{0}}{4}\left[1 \pm \frac{32}{9 \pi^{2}}\right]$

Q51. Consider a system of two Ising spins S_{1} and S_{2} taking values ± 1 with interaction energy given by $\varepsilon=-J S_{1} S_{2}$, when it is in thermal equilibrium at temperature T. For $\operatorname{large} T$, the average energy of the system varies as $C / k_{B} T$, with C given by
(a) $-2 J^{2}$
(b) $-J^{2}$
(c) J^{2}
(d) $4 J$

Q52. Consider three particles A, B and C, each with an attribute S that can take two values ± 1. Let $S_{A}=1, S_{B}=1$ and $S_{C}=-1$ at a given instant. In the next instant, each S value can change to $-S$ with probability $1 / 3$. The probability that $S_{A}+S_{B}+S_{C}$ remains unchanged is
(a) $2 / 3$
(b) $1 / 3$
(c) $2 / 9$
(d) $4 / 9$

Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q53. The bound on the ground state energy of the Hamiltonian with an attractive deltafunction potential, namely

$$
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}-a \delta(x)
$$

using the variational principle with the trial wavefunction $\psi(x)=A \exp \left(-b x^{2}\right)$ is
$\left[\right.$ Note $\left.: \int_{0}^{\infty} e^{-t} t^{a} d t=\Gamma(a+1)\right]$
(a) $-m a^{2} / 4 \pi \hbar^{2}$
(b) $-m a^{2} / 2 \pi \hbar^{2}$
(c) $-m a^{2} / \pi \hbar^{2}$
(d) $-m a^{2} / \sqrt{5} \pi \hbar^{2}$

Q54. Consider two different systems each with three identical non-interacting particles. Both have single particle states with energies $\varepsilon_{0}, 3 \varepsilon_{0}$ and $5 \varepsilon_{0},\left(\varepsilon_{0}>0\right)$. One system is populated by spin $-\frac{1}{2}$ fermions and the other by bosons. What is the value of $E_{F}-E_{B}$ where E_{B} and E_{B} are the ground state energies of the fermionic and bosonic systems respectively?
(a) $6 \varepsilon_{0}$
(b) $2 \varepsilon_{0}$
(c) $4 \varepsilon_{0}$
(d) ε_{0}

Q55. The input to a lock-in amplifier has the form $V_{i}(t)=V_{i} \sin \left(\omega t+\theta_{i}\right)$ where $V_{i}, \omega, \theta_{i}$ are the amplitude, frequency and phase of the input signal respectively. This signal is multiplied by a reference signal of the same frequency ω, amplitude V_{r} and phase θ_{r}. If the multiplied signal is fed to a low pass filter of cut-off frequency ω, the final output signal is
(a) $\frac{1}{2} V_{i} V_{r} \cos \left(\theta_{i}-\theta_{r}\right)$
(b) $V_{i} V_{r}\left[\cos \left(\theta_{i}-\theta_{r}\right)-\cos \left(\frac{1}{2} \omega t+\theta_{i}+\theta_{r}\right)\right]$
(c) $V_{i} V_{r} \sin \left(\theta_{i}-\theta_{r}\right)$
(d) $V_{i} V_{r}\left[\cos \left(\theta_{i}-\theta_{r}\right)+\cos \left(\frac{1}{2} \omega t+\theta_{i}+\theta_{r}\right)\right]$

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Q56. The solution of the partial differential equation

$$
\frac{\partial^{2}}{\partial t^{2}} u(x, t)-\frac{\partial^{2}}{\partial x^{2}} u(x, t)=0
$$

satisfying the boundary conditions $u(0, t)=0=u(L, t)$ and initial conditions $u(x, 0)=\sin (\pi x / L)$ and $\left.\frac{\partial}{\partial t} u(x, t)\right|_{t=0}=\sin (2 \pi x / L)$ is
(a) $\sin (\pi x / L) \cos (\pi t / L)+\frac{L}{2 \pi} \sin (2 \pi x / L) \cos (2 \pi t / L)$
(b) $2 \sin (\pi x / L) \cos (\pi t / L)-\sin (\pi x / L) \cos (2 \pi t / L)$
(c) $\sin (\pi x / L) \cos (2 \pi t / L)+\frac{L}{\pi} \sin (2 \pi x / L) \sin (\pi t / L)$
(d) $\sin (\pi x / L) \cos (\pi t / L)+\frac{L}{2 \pi} \sin (2 \pi x / L) \sin (2 \pi t / L)$

Q57. Consider the hydrogen-deuterium molecule HD. If the mean distance between the two atoms is 0.08 nm and the mass of the hydrogen atom is $938 \mathrm{MeV} / \mathrm{c}^{2}$, then the energy difference ΔE between the two lowest rotational states is approximately
(a) $10^{-1} \mathrm{eV}$
(b) $10^{-2} \mathrm{eV}$
(c) $2 \times 10^{-2} \mathrm{eV}$
(d) $10^{-3} \mathrm{eV}$

Q58. Four digital outputs V, P, T and H monitor the speed v, tyre pressure p, temperature t and relative humidity h of a car. These outputs switch from 0 to 1 when the values of the parameters exceed $85 \mathrm{~km} / \mathrm{hr}, 2 \mathrm{bar}, 40^{\circ} \mathrm{C}$ and 50%, respectively. A logic circuit that is used to switch ON a lamp at the output E is shown below.

[^3]Branch office
Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Which of the following condition will switch the lamp ON?
(a) $v<85 \mathrm{~km} / \mathrm{hr}, p<2 \mathrm{bar}, t>40^{\circ} \mathrm{C}, \mathrm{h}>50 \%$
(b) $v<85 \mathrm{~km} / \mathrm{hr}, p<2 \mathrm{bar}, t>40^{\circ} \mathrm{C}, h<50 \%$
(c) $v>85 \mathrm{~km} / \mathrm{hr}, p<2 \mathrm{bar}, t>40^{\circ} \mathrm{C}, h<50 \%$
(d) $v>85 \mathrm{~km} / \mathrm{hr}, p<2 \mathrm{bar}, t>40^{\circ} \mathrm{C}, h>50 \%$

Q59. The solution of the differential equation

$$
\frac{d x}{d t}=x^{2}
$$

with the initial condition $x(0)=1$ will blow up as t tends to
(a) 1
(b) 2
(c) $1 / 2$
(d) ∞

Q60. Let u be a random variable uniformly distributed in the interval $[0,1]$ and $V=-c \ln u$, where c is a real constant. If V is to be exponentially distributed in the interval $[0, \infty)$ with unit standard deviation, then the value of c should be
(a) $\ln 2$
(b) $1 / 2$
(c) 1
(d) -1

Q61. The inverse Laplace transforms of $\frac{1}{s^{2}(s+1)}$ is
(a) $\frac{1}{2} t^{2} e^{-t}$
(b) $\frac{1}{2} t^{2}+1-e^{-t}$
(c) $t-1+e^{-t}$
(d) $\frac{1}{2} t^{2}\left(1-e^{-t}\right)$

Q62. The number of degrees of freedom of a rigid body in d space-dimensions is
(a) $2 d$
(b) 6
(c) $d(d+1) / 2$
(d) d !

Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q63. A particle of mass m is at the stable equilibrium position of its potential energy

$$
V(x)=a x-b x^{3}
$$

where a, b are positive constants. The minimum velocity that has to be imparted to the particle to render its motion unstable is
(a) $\left(64 a^{3} / 9 m^{2} b\right)^{1 / 4}$
(b) $\left(64 a^{3} / 279 m^{2} b\right)^{1 / 4}$
(c) $\left(16 a^{3} / 27 m^{2} b\right)^{1 / 4}$
(d) $\left(3 a^{3} / 64 m^{2} b\right)^{1 / 4}$

Q64. If the operators A and B satisfy the commutation relation $[A, B]=I$, where I is the identity operator, then
(a) $\left[e^{A}, B\right]=e^{A}$
(b) $\left[e^{A}, B\right]=\left[e^{B}, A\right]$
(c) $\left[e^{A}, B\right]=\left[e^{-B}, A\right]$
(d) $\left[e^{A}, B\right]=I$

Q65. A system is governed by the Hamiltonian

$$
H=\frac{1}{2}\left(p_{x}-a y\right)^{2}+\frac{1}{2}\left(p_{x}-b x\right)^{2}
$$

where a and b are constants and p_{x}, p_{y} are momenta conjugate to x and y respectively. For what values of a and b will the quantities $\left(p_{x}-3 y\right)$ and $\left(p_{y}+2 x\right)$ be conserved?
(a) $a=-3, b=2$
(b) $a=3, b=-2$
(c) $a=2, b=-3$
(d) $a=-2, b=3$

Q66. Using the frequency-dependent Drude formula, what is the effective kinetic inductance of a metallic wire that is to be used as a transmission line? [In the following, the electron mass is m, density of electrons is n, and the length and cross-sectional area of the wire ℓ and A respectively.]
(a) $m A /\left(n e^{2} \ell\right)$
(b) zero
(c) $m \ell l\left(n e^{2} A\right)$
(d) $m \sqrt{A} /\left(n e^{2} \ell^{2}\right)$

Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q67. The phonon dispersion for the following one-dimensional diatomic lattice with masses M_{1} and M_{2} (as shown in the figure)

$$
\omega^{2}(q)=K\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right)\left[1 \pm \sqrt{1-\frac{4 M_{1} M_{2}}{\left(M_{1}+M_{2}\right)^{2}} \sin ^{2}\left(\frac{q a}{2}\right)}\right]
$$

where a is the lattice parameter and K is the spring constant. The velocity of sound is
(a) $\sqrt{\frac{K\left(M_{1}+M_{2}\right)}{2 M_{1} M_{2}}} a$
(b) $\sqrt{\frac{K}{2\left(M_{1}+M_{2}\right)}} a$
(c) $\sqrt{\frac{K\left(M_{1}+M_{2}\right)}{M_{1} M_{2}} a}$
(d) $\sqrt{\frac{K M_{1} M_{2}}{2\left(M_{1}+M_{2}\right)^{3}}} a$

Q68. The binding energy of a light nucleus (Z, A) in MeV is given by the approximate formula

$$
B(A, Z) \approx 16 A-20 A^{2 / 3}-\frac{3}{4} Z^{2} A^{-1 / 3}+30 \frac{(N-Z)^{2}}{A}
$$

where $N=A-Z$ is the neutron number. The value of Z of the most stable isobar for a given A is
(a) $\frac{A}{2}\left(1-\frac{A^{2 / 3}}{160}\right)^{-1}$
(b) $\frac{A}{2}$
(c) $\frac{A}{2}\left(1-\frac{A^{2 / 3}}{120}\right)^{-1}$
(d) $\frac{A}{2}\left(1+\frac{A^{4 / 3}}{64}\right)^{-1}$

Q69. Muons are produced through the annihilation of particle a and its antiplarticle, namely the process

$$
a+\bar{a} \rightarrow \mu^{+}+\mu^{-}
$$

A muon has a rest mass of $105 \mathrm{MeV} / \mathrm{c}^{2}$ and its proper life time is $2 \mu s$. If the center of mass energy of the collision is 2.1 GeV in the laboratory frame that coincides with the center-of-mass frame, then the fraction of muons that will decay before they reach a detector placed 6 km away from the interaction point is
(a) e^{-1}
(b) $1-e^{-1}$
(c) $1-e^{-2}$
(d) e^{-10}

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q70. The conductors in a 0.75 km long two-wire transmission line are separated by a centre-tocentre distance of 0.2 m . If each conductor has a diameter of 4 cm , then the capacitance of the line is
(a) $8.85 \mu \mathrm{~F}$
(b) 88.5 nF
(c) 8.85 pF
(d) 8.85 nF

Q71. The electron dispersion relation for a one-dimensional metal is given by

$$
\varepsilon_{k}=2 \varepsilon_{0}\left[\sin ^{2} \frac{k a}{2}-\frac{1}{6} \sin ^{2} k a\right]
$$

where k is the momentum, a is the lattice constant, ε_{0} is a constant having dimensions of energy and $|k a| \leq \pi$. If the average number of electrons per atom in the conduction band is $1 / 3$, then the Fermi energy is
(a) $\varepsilon_{0} / 4$
(b) ε_{0}
(c) $2 \varepsilon_{0} / 3$
(d) $5 \varepsilon_{0} / 3$

Q72. The electronic energy levels in a hydrogen atom are given by $E_{n}=-13.6 / n^{2} \mathrm{eV}$. If a selective excitation to the $n=100$ level is to be made using a laser, the maximum allowed frequency line-width of the laser is
(a) 6.5 MHz
(b) 6.5 GHz
(c) 6.5 Hz
(d) 6.5 kHz

Q73. If the energy dispersion of a two-dimensional electron system is $E=u \hbar k$ where u is the velocity and k is the momentum, then the density of states $D(E)$ depends on the energy as
(a) $1 / \sqrt{E}$
(b) \sqrt{E}
(c) E
(d) constant

Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

fiziks

fiziks

Institute for NET/JRF, GATE, IIT-JAM , JEST, TIFR and GRE in PHYSICAL SCIENCES

Q74. Consider the laser resonator cavity shown in the figure.

If I_{1} is the intensity of the radiation at mirror M_{1} and α is the gain coefficient of the medium between the mirrors, then the energy density of photons in the plane P at a distance x from M_{1} is
(a) $\left(I_{1} / c\right) e^{-\alpha x}$
(b) $\left(I_{1} / c\right) e^{\alpha x}$
(c) $\left(I_{1} / c\right)\left(e^{\alpha x}+e^{-\alpha x}\right)$
(d) $\left(I_{1} / c\right) e^{2 \alpha x}$

Q75. A spin- $1 / 2$ particle A undergoes the delay

$$
A \rightarrow B+C+D
$$

where it is known that B and C are also spin- $1 / 2$ particles. The complete set of allowed values of the spin of the particle D is
(a) $\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$
(b) 0,1
(c) $\frac{1}{2}$ only
(d) $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots$.

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

[^0]: Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

[^1]: Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

[^2]: Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

[^3]: Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

