GATE - 2014

Q.1-Q. 25 carry one mark each.

Q1 The unit vector perpendicular to the surface $x^{2}+y^{2}+z^{2}=3$ at the point $(1,1,1)$ is
(a) $\frac{\hat{x}+\hat{y}-\hat{z}}{\sqrt{3}}$
(b) $\frac{\hat{x}-\hat{y}-\hat{z}}{\sqrt{3}}$
(c) $\frac{\hat{x}-\hat{y}+\hat{z}}{\sqrt{3}}$
(d) $\frac{\hat{x}+\hat{y}+\hat{z}}{\sqrt{3}}$

Q2. Which one of the following quantities is invariant under Lorentz transformation?
(a) charge density
(b) Charge
(c) Current
(d)Electric field

Q3. The number of normal Zeeman splitting components of ${ }^{1} P \rightarrow D$ transition is
(a) 3
(b) 4
(c) 8
(d) 9

Q4. If the half -life of an elementary particle moving with speed 0.9 c in the laboratory frame is $5 \times 10^{-8} s$, then the proper half-life is \qquad $\times 10^{-8} \mathrm{~s} .\left(c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
Q5. An unpolarized light wave is incident from air on a glass surface at the Brewster angle. The angle between the reflected and the refracted wave is
(a) 0°
(b) 45°
(c) 90°
(d) 120°

Q6. Two masses m and $3 m$ are attached to the two ends of a massless spring with force constant K. If $m=100 g$ and $K=0.3 \mathrm{~N} / m$, then the natural angular frequency of oscillation is \qquad Hz
Q7. The electric filed of a uniform plane wave propagating in a dielectric non-conducting medium is given by $\vec{E}=x 10 \cos \left(6 \pi \times 10^{7} t-0.4 \pi z\right) V / m$. The phase velocity of the wave is \qquad $10^{8} \mathrm{~m} / \mathrm{s}$

Q8. The matrix

$$
A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1+i \\
1-i & -1
\end{array}\right] \text { is }
$$

(a) orthogonal
(b) symmetric
(c) anti-symmetric
(d) Unitary

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q9. The recoil momentum of an atom is p_{A} when it emits an infrared photon of wavelength 1500 nm , and it is p_{B} when it emits a photon of visible wavelength 500 nm . The ratio $\frac{p_{A}}{p_{B}}$ is
(a) $1: 1$
(b) $1: \sqrt{3}$
(c) $1: 3$
(d) $3: 2$

Q10. For a gas under isothermal condition its pressure p varies with volume V as $P \propto V^{-5 / 3}$. The bulk modules B is proportional to
(a) $V^{-1 / 2}$
(b) $V^{-2 / 3}$
(c) $V^{-3 / 5}$
(d) $V^{-5 / 3}$

Q11. Which one of the following high energy processes is allowed by conservation laws?
(a) $p+\bar{p} \rightarrow A^{0}+A^{0}$
(b) $\pi^{-}+p \rightarrow \pi^{0}+n$
(c) $n \rightarrow p+e^{-}+V_{e}$
(d) $\mu^{+} \rightarrow e^{+}+\gamma$

Q12. The length element $d s$ of an arc is given by, $(d s)^{2}=2\left(d s^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\sqrt{3} d x^{1} d x^{2}$. The metric tensor $g_{i j}$ is
(a) $\left(\begin{array}{cc}2 & \sqrt{3} \\ \sqrt{3} & 1\end{array}\right)$
(b) $\left(\begin{array}{cc}2 & \frac{\sqrt{3}}{2} \\ \sqrt{\frac{3}{2}} & 1\end{array}\right)$
(c) $\left(\begin{array}{cc}2 & 1 \\ \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{2}}\end{array}\right)$
(d) $\left(\begin{array}{cc}1 & \sqrt{\frac{3}{2}} \\ \sqrt{\frac{3}{2}} & 2\end{array}\right)$

Q13. The ground state and first excited state wave function of a one dimensional infinite potential well are ψ_{1} and ψ_{2} respectively. When two spin-up electrons are placed in this potential which one of the following with x_{1} and x_{2} denoting the position of the two electrons correctly represents the space part of the ground state wave function of the system?

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

(a) $\frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{1}\right)-\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{2}\right)\right]$
(b) $\frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)+\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right]$
(c) $\frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{1}\right)+\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{2}\right)\right]$
$\left(\mathrm{d} \frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)-\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right]\right)$

Q14. If the vector potential $\vec{A}=\alpha x \hat{x}+2 y \hat{y}-3 z \hat{z}$, satisfies the Coulomb gauge, the value of the constant α is \qquad

Q15. At a given temperature T, the average energy per particle of a non-interacting gas of two-dimensional classical harmonic oscillators is \qquad $k_{B} T$ (k_{B} is the Boltzmann constant)

Q16. which one of the following is a fermion?
(a) α particle
(b) ${ }_{4} B e^{2}$ nucleus
(c) Hydrogen atom
(d)deuteron

Q17. which one of the following three-quark states (qqq) denoted by X. CANNOT be a possible baryon? The corresponding electric charge is indicated in the superscript.
(a) X^{++}
(b) X^{+}
(c) X^{-}
(d) X^{--}

Q18. The Hamilton's canonical equation of motion in terms of Poisson Brackets are
(a) $\dot{q}=\{q, H\} ; \dot{p}=\{p, H\}$
(b) $\dot{q}=\{H, q\} ; \dot{p}=\{H, p\}$
(c) $\dot{q}=\{H, p\} ; \dot{p}=\{H, p\}$
(d) $\dot{q}=\{p, H\} ; \dot{p}=\{q, H\}$

Q19. The Miller indices of a plane passing through the three points having coordinates $(0,0,1)$ $(1,0,0)\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}\right)$ are
(a) (212)
(b)(111)
(c) (121)
(d) (211)

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

fiziks

Q20. The plot of specifies heat versus temperature across the superconducting transition temperature $\left(T_{c}\right)$ is most appropriately represented by
(a)

(b)

(c)

(d)

Q21. If \vec{L} is the orbital angular momentum and \bar{S} is the spin angular momentum, then $\vec{L} . \vec{S}$ does not commute with
(a) S_{z}
(b) L^{2}
(c) S^{2}
(d) $(\vec{L}+\vec{S})^{2}$

Q22. The energy ε_{k} for band electrons as a function of the wave vector k in the first Brillouin zone $\left(-\frac{\pi}{a} \leq k \leq \frac{\pi}{a}\right)$ of a one dimensional monatomic lattice is shown as (a is lattice constant)

[^0]
Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

The variation of the group velocity v_{k} is most appropriately represented by

(c)

(d)

Q23. for a free electron gas in two dimensions the variations of the density of states. $N(E)$ as a function of energy E, is best represented by
(a)

(b)

(c)

(d)

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

fiziks

fiziks

Institute for NET/JRF, GATE, IIT-JAM , JEST, TIFR and GRE in PHYSICAL SCIENCES

Q24. The input given to an ideal OP-AMP integrator circuit is

The correct output of the integrator circuit is
(a)

(b)

(c)
(d)

Q25. The minimum number of flip-flops required to construct a mod-75 counter is
\qquad

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16
fiziks
t! $!$! ${ }^{2}$

Q26. A bead of mass m can slide without friction along a massless rod kept at 45° with the vertical as shown in the figure. The rod is rotating about the vertical axis with a constant angular speed ω. At any instant r is the distance of the bead from the origin. The momentum conjugate to r is

(a) $m \dot{r}$
(b) $\frac{1}{\sqrt{2}} m \dot{r}$
(c) $\frac{1}{2} m \dot{r}$
(d) $\sqrt{2} m \dot{r}$

Q27. An electron in the ground state of the hydrogen atom has the wave function $\psi(\vec{r})=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-\left(\frac{r}{a_{0}}\right)}$ where a_{0} is constant. The expectation value of the operator $\hat{Q}=z^{2}-r^{2}$, where $z=r \cos \theta$ is
(Hint: $\int_{0}^{\infty} e^{-a r} r^{n} d r=\frac{r(n)}{a^{n+1}}=\frac{(n-1)!}{a^{n+1}}$)
(a) $\frac{-a_{0}^{2}}{2}$
(b) $-a_{0}^{2}$
(c) $\frac{-3 a_{0}^{2}}{2}$
(d) $-2 a_{0}^{2}$

Q28. For Nickel the number density is 8×10^{23} atoms $/ \mathrm{cm}^{3}$ and electronic configuration is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$. The value of the saturation magnetization of Nickel in its ferromagnetic state is \qquad $\times 10^{9} \mathrm{~A} / \mathrm{m}$.
(Given the value of Bohr magneton $\mu_{B}=9.21 \times 10^{-21} \mathrm{Am}^{2}$)

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16

Branch office
Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Q29. A particle of mass m is in a potential given by

$$
V(r)=\frac{a}{r}+\frac{a r_{n}^{2}}{3 r^{2}}
$$

when a and r are positive constants. When disturbed slightly from its stable equilibrium position it undergoes a simple harmonic oscillation. The time period of oscillation is
(a) $2 \pi \sqrt{\frac{m r_{0}^{3}}{2 a}}$
(b) $2 \pi \sqrt{\frac{m r_{0}{ }^{3}}{a}}$
(c) $2 \pi \sqrt{\frac{2 m r_{0}{ }^{3}}{a}}$
(d) $4 \pi \sqrt{\frac{m r_{0}^{3}}{a}}$

Q30. The donar concentration in a sample of n-type silicon is increased by a factor of 100 . the shift in the position of the Fermi level at 300 K . assuming the sample to non degenerate is \qquad $m e V$
$\left(k_{B} T=25 m e V\right.$ at $\left.300 K\right)$
Q31. A particle of mass m is subjected to a potential
$V(x, y)=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right),-\infty \leq x \leq \infty,-\infty \leq y \leq \infty$
The state with energy $4 \hbar \omega$ is g-fold degenerate. The value of g is \qquad
Q32. A hydrogen atom is in the state
$\psi=\sqrt{\frac{8}{21}} \psi_{200}-\sqrt{\frac{3}{7}} \psi_{310}+\sqrt{\frac{4}{21}} \psi_{321}$.
where n, l, m in $\psi_{n l m}$ denote the principal. Orbit and magnetic quantum numbers, respectively. If \vec{L} is the angular momentum operator, the average value of L^{2} is
\qquad \hbar^{2}

Q33. A planet of mass m moves in a circular orbit of radius r_{0} in the gravitational potential $V(r)=-\frac{k}{r}$, where k is a positive constant. The orbit angular momentum of the planet is
(a) $2 r_{0} \mathrm{~km}$
(b) $\sqrt{2 r_{0} k m}$
(c) $r_{0} \mathrm{~km}$
(d) $\sqrt{r_{0} k m}$

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

fiziks

Q34. The moment of inertia of a rigid diatomic molecule A is 6 times that of another rigid diatomic molecule B. If the rotational energies of the two molecules are equal, then the corresponding values of the rotational quantum numbers J_{A} and J_{B} are
(a) $J_{A}=2, J_{B}=1$
(b) $J_{A}=3, J_{B}=1$
(c) $J_{A}=5, J_{B}=0$
(d) $J_{A}=6, J_{B}=1$

Q35. The value of the integral
$\oint_{C} \frac{z^{2}}{e^{z}+1} d z$
where C is the circle $|z|=4$, is
(a) $2 \pi i$
(b) $2 \pi^{2} i$
(c) $4 \pi^{3} i$
(d) $4 \pi^{2} i$

Q36. A ray of light inside Region 1 in the $x y$-plane is incident at the semicircular boundary that carries no free charges. The electric field at the point $P\left(r_{0} \frac{\pi}{4}\right)$ in plane polar coordinates is $\vec{E}_{1}=7 \hat{e}_{r}-3 \hat{e}_{\varphi}$, where \hat{e}_{r} and \hat{e}_{φ} are the unit vectors. The emerging ray in Region 2 has the electric field \vec{E}_{2} parallel to x-axis. If ε_{1} and ε_{2} are the dielectric constants of Region 1and Region 2 respectively then $\frac{\varepsilon_{2}}{\varepsilon_{1}}$ is

Branch office

Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Q37. The solution of the differential equation

$$
\frac{d^{2} y}{d t^{2}}-y=0
$$

subject to the boundary conditions $y(0)=1$ and $y(\infty)=0$ is
(a) $\cos t+\sin t$
(b) $\cosh t+\sinh t$
(c) $\cos t-\sin t$
(d) $\cosh t-\sin t$

Q38. Given that the linear transformation of a generalized coordinate q and the corresponding momentum p,

$$
\begin{aligned}
& Q=q+4 a p \\
& P=q+2 p
\end{aligned}
$$

is canonical, the value of the constant a is \qquad

Q39. The value of the magnetic field required to maintain non-relativistic protons of energy 1 MeV in a circular orbit of radius 100 mm is \qquad Tesla
(Given: $m_{p}=1.67 \times 10^{-27} \mathrm{~kg} . e=1.6 \times 10^{-19} \mathrm{C}$)

Q40. For a system of two bosons each of which can occupy any of the two energy levels 0and ε the mean energy of the system at temperature T with $\beta=\frac{1}{k_{\beta} T}$ is given by
(a) $\frac{\varepsilon e^{-\beta \varepsilon}+2 \varepsilon e^{-2 \beta \varepsilon}}{1+2 e^{-\beta \varepsilon}+e^{-2 \beta \varepsilon}}$
(b) $\frac{1+\varepsilon e^{-\beta \varepsilon}}{2 e^{-\beta \varepsilon}+e^{-2 \beta \varepsilon}}$
(c) $\frac{2 \varepsilon e^{-\beta \varepsilon}+\varepsilon e^{-2 \beta \varepsilon}}{2+e^{-\beta \varepsilon}+e^{-2 \beta \varepsilon}}$
(d) $\frac{\varepsilon e^{-\beta \varepsilon}+2 \varepsilon e^{-2 \beta \varepsilon}}{2+e^{-\beta \varepsilon}+e^{-2 \beta \varepsilon}}$

Q41. In an interference pattern formed by two coherent sources, the maximum and minimum of the intensities are $9 I_{0}$ and I_{0}, respectively. The intensities of the individual wave are
(a) $3 I_{0}$ and I_{0}
(b) $4 I_{0}$ and I_{0}
(c) $5 I_{0}$ and $4 I_{0}$
(d) $9 I_{0}$ and I_{0}

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Q42. ψ_{1} and ψ_{2} are two orthogonal states of a spin $\frac{1}{2}$ system. It is given that

$$
\psi_{1}=\frac{1}{\sqrt{3}}\binom{1}{0}+\sqrt{\frac{2}{3}}\binom{0}{1}
$$

where $\binom{1}{0}$ and $\binom{0}{1}$ represent the spin-up and spin-down states, respectively. When the system is in the state ψ_{2} its probability to be in the spin-up state is \qquad
Q43. Neutrons moving with speed $10^{3} \mathrm{~m} / \mathrm{s}$ are used for the determination of crystal structure. If the Bragg angle for the first order diffraction is 30° the interplannar spacing of the crystal is \qquad ${ }^{0}$
(Given: $m_{n}=1.675 \times 10^{27} \mathrm{kgh}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$)
Q44. The Hamiltonian of particle of mass m is given by $H=\frac{p^{2}}{2 m}-\frac{\alpha q^{2}}{2}$. which one of the following figure describes the motion of the particle in phase space?
(a)

(b)

(c)

(d)

Branch office

Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near ITT
Hauz Khas, New Delhi-16

Q45. The intensity of a laser in free space is $150 \mathrm{~mW} / \mathrm{m}^{2}$. The corresponding amplitude of the electric field of the laser is \qquad $\left(\varepsilon_{0}=8.854 \times 10^{-12} C^{2} / N . m^{2}\right)$

Q46. The emission wavelength for the transition $D_{2} \rightarrow F_{3}$ is 3122^{\prime}. The ratio of population of the final to the initial states at a temperature 5000 K is $\left(h=6.626 \times 10^{-34} \mathrm{~J} . s, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} k_{B}=1.380 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
(a) 2.03×10^{-5}
(b) 4.02×10^{-5}
(c) 7.02×10^{-5}
(d) 9.83×10^{-5}

Q47. Consider a system of 3 fermions which can occupy any of the 4 available energy states with equal probability. The entropy of the system is
(a) $k_{B} \ln 2$
(b) $2 k_{B} \ln 2$
(c) $2 k_{B} \ln 4$
(d) $3 k_{B} \ln 4$

Q48. A particle is confined to a one dimensional potential box, with the potential

$$
\begin{aligned}
V(x) & =0, & & 0<x<a \\
& =\infty, & & \text { otherwise }
\end{aligned}
$$

If particle is subjected to a perturbation within the box. $W=\beta x$. Where β is small constant, the first order correction to the ground state energy is
(a) 0
(b) $a \beta / 4$
(c) $a \beta / 2$
(d) $a \beta$

Q49. consider the process $\mu^{+}+\mu \rightarrow \pi^{+}+\pi^{-}$. The minimum kinetic energy of the muons (μ) in the centre of mass frame required to produce the pion (π) pairs at rest is
\qquad Mev.
Q50. A one dimensional harmonic oscillator is in the superposition of number state $|n\rangle$ given by $|\psi\rangle=\frac{1}{2}|2\rangle+\frac{\sqrt{3}}{2}|3\rangle$

The average energy of the oscillator in the given state is \qquad $\hbar \omega$.
Q51. A nucleus X undergoes a first forbidden β-decay to nucleus Y. If the angular momentum (I) and parity (P), denoted by I^{P} as $\frac{7^{-}}{2}$ for X which of the following is a possible I^{P} value for Y ?

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics,
28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

(a) $\frac{1^{+}}{2}$
(b) $\frac{1^{-}}{2}$
(c) $\frac{3^{+}}{2}$
(d) $\frac{3^{-}}{2}$

Q52. The current gain of the transistor in the following circuit is $\beta_{d c}=100$. The value of collector current I_{c} is \qquad

Q53. In order to measure a maximum of $1 V$ with a resolution of $1 m V$ using a n-bit $\frac{A}{D}$ converter working under the principle of ladder network the minimum value of n is
\qquad
Q54. If L_{+}and L_{-}are the angular momentum ladder operators then the expectation value of $\left(L_{+} L_{-}+L_{-} L_{+}\right)$in the state $|l=1, m=1\rangle$ of an atom is \qquad \hbar

Q55. A low pass liter is formed by a resistance R and a capacitance C. At the cut-off angular frequency $\omega_{c}=\frac{1}{R C}$, the voltage gain and the phase of the output voltage relative to the input voltage respectively are
(a) 0.71 and 45°
(b) 0.71 and -45°
(c) 0.5 and -90°
(d) 0.5 and 90°

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

fiziks

Q.1-Q. 5 carry one mark each.

Q1. A student is required to demonstrate a high level of comprehension of the subject, especially in the social sciences.
The word closest in meaning to comprehension is
(a) understanding
(b) meaning
(c) concentration
(d) stability

Q2. choose the most appropriate word from the options given below to complete the following sentence.
One of his biggest \qquad was his ability to forgive
(a) vice
(b) virtues
(c) choices
(d) strength

Q3. Rajan was not happy that Sajan decided to do the project on his own on observing his unhappiness. Sajan explained to Rajan that he preferred to work independently.
Which one of the statements below is logically valid and can be inferred from the above sentences?
(a) Rajan has decided to work only in a group
(b) Rajan and Sajan were formed into a group against their wishes
(c) Sajan had decided to give in to Rajan's request to work with him
(d) Rajan had believed that Sajan and he would be working together

Q4. If $y=5 x^{2}+3$, then the tangent at $x=0, x=3$
(a) passes through $x=0, y=0$
(b) has a slope of +1
(c) is parallel to the x-axis
(d) has a slope of -1

Q5. A foundry has a fixed daily cost of Rs 50,000 whenever it operates and a variable cost of Rs $800 Q$, where Q is the daily production in tonnes. What is the cost of production in Rs per tonne for a daily production of 100 tonnes?

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Q.6-Q. 10 carry two mark each.

Q6. Find the odd one in the following group: ALRVX, EPVZB, ITZDF, OYEIK
(a) $A L R V X$
(b) $E P V Z B$
(c) $I T Z D F$
(d) OYEIK

Q7 Anuj, Bhola, Chandan, Dilip, Eswar and Faisal live on different floors in a six-storeyed building (the ground floor is numbered 1, the floor above it 2, and so on). Anuj lives on an even numbered floor, Bhola does not live on an odd numbered floor. Chandan does not live on any of the floors below Faisal's floor. Dilip does not live on floor number 2. Eswar does not live on a floor immediately above or immediately below Bhola. Faisal lives three floors above Dilip. Which of the following floor-person combinations is correct?

	Anuj	Bhola	Chandan	Dilip	Eswar	Faisal
(A)	6	2	5	1	3	4
(B)	2	6	5	1	3	4
(C)	4	2	6	3	1	5
(D)	2	4	6	1	3	5

Q8 The smallest angle of a triangle is equal to two third of the smallest angle of quadrilateral. The ratio between the angles of the quadrilateral is 3:4:5:6. The largest angle of the triangle is twice its smallest angle. What is the sum, in degrees, of the second largest angle of the triangle and the largest angle of the quadrilateral?

Q9. One percent of the people of country X are taller than 6 ft two percent of the people of country Y are taller than 6 ft . There are thrice as many people in country X as in country Y. Taking both countries together, what is the percentage of people taller than 6 ft ?

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16
fiziks
t!క! ${ }^{2}$
(a) 3.0
(b) 2.5
(c) 1.5
(d) 1.25

Q10. The monthly rainfall chart based on 50 years of rainfall in Agra is shown in the following figure. Which of the following are true? (k percentile is the value such that k percent of the data fall below the value)

(i) On average, it rains more in July than in December
(ii) Every year, the amount of rainfall in August is more than that in January
(iii) July rainfall can be estimated with better confidence than February rainfall
(iv) In August, there is at least 500 mm of rainfall
(a) (i) and (ii)
(b) (i) and (iii)
(c) (ii) and (iii)
(d) (iii) and (iv)

Head office

fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office

Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16
fiziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES
t! $5!k 2$

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/ +91-9871145498

Branch office
Anand Institute of Mathematics, 28-B/ 6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

[^0]: Head office
 fiziks, H.No. 23, G.F, Jia Sarai,
 Near IIT, Hauz Khas, New Delhi-16
 Phone: 011-26865455/ +91-9871145498

