

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

#### **JEST 2015**

#### Part A: 3 Mark Questions

Q1. A circular loop of radius R, carries a uniform line charge density  $\lambda$ . The electric field, calculated at a distance z directly above the center of the loop, is maximum if z is equal to,

(a) 
$$\frac{R}{\sqrt{3}}$$
 (b)  $\frac{R}{\sqrt{2}}$  (c)  $\frac{R}{2}$  (d)  $2R$ 

- Q2. Consider two point charges q and  $\lambda q$  located at the points, x = a and  $x = \mu a$ , respectively. Assuming that the sum of the two charges is constant, what is the value of  $\lambda$  for which the magnitude of the electrostatic force is maximum?
  - (a)  $\mu$  (b) 1 (c)  $\frac{1}{\mu}$  (d)  $1 + \mu$
- Q3. Consider a harmonic oscillator in the state  $|\psi\rangle = e^{\frac{|\alpha|^2}{2}}e^{\alpha a^+} |0\rangle$ , where  $|0\rangle$  is the ground state,  $a^+$  is the raising operator and  $\alpha$  is a complex number. What is the probability that the harmonic oscillator is in the *n*-th eigenstate  $|n\rangle$ ?

(a) 
$$e^{-|\alpha^2|} \frac{|\alpha|^{2n}}{n!}$$
  
(b)  $e^{-\frac{|\alpha|^2}{2} \frac{|\alpha|^n}{\sqrt{n!}}}$   
(c)  $e^{-|\alpha|^2} \frac{|\alpha|^n}{n!}$   
(d)  $e^{-\frac{|\alpha|^2}{2} \frac{|\alpha|^{2n}}{n!}}$ 

Q4. The distance of a star from the Earth is 4.25 light years, as measured from the Earth. A space ship travels from Earth to the star at a constant velocity in 4.25 years, according to the clock on the ship. The speed of the space ship in units of the speed of light is,

(a) 
$$\frac{1}{2}$$
 (b)  $\frac{1}{\sqrt{2}}$  (c)  $\frac{2}{3}$  (d)  $\frac{1}{\sqrt{3}}$ 

Q5. Given an analytic function  $f(z) = \phi(x, y) + i\psi(x, y)$ , where  $\phi(x, y) = x^2 + 4x - y^2 + 2y$ . If *C* is a constant, which of the following relations is true?

- (a)  $\psi(x, y) = x^2 y + 4y + C$  (b)  $\psi(x, y) = 2xy 2x + C$
- (c)  $\psi(x,y) = 2xy + 4y 2x + C$  (d)  $\psi(x,y) = x^2y 2x + C$

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



#### Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q6. For a system in thermal equilibrium with a heat bath at temperature T, which one of the

following equalities is correct? ( $\beta = \frac{1}{k_B T}$ )

(a) 
$$\frac{\partial}{\partial\beta} \langle E \rangle = \langle E \rangle^2 - \langle E^2 \rangle$$
  
(b)  $\frac{\partial}{\partial\beta} \langle E \rangle = \langle E^2 \rangle - \langle E \rangle^2$   
(c)  $\frac{\partial}{\partial\beta} \langle E \rangle = \langle E^2 \rangle + \langle E \rangle^2$   
(d)  $\frac{\partial}{\partial\beta} \langle E \rangle = -(\langle E^2 \rangle + \langle E \rangle^2)$ 

Q7. A classical particle with total energy *E* moves under the influence of a potential  $V(x, y) = 3x^3 + 2x^2y + 2xy^2 + y^3$ . The average potential energy, calculated over a long time is equal to,

(a) 
$$\frac{2E}{3}$$
 (b)  $\frac{E}{3}$  (c)  $\frac{E}{5}$  (d)  $\frac{2E}{5}$ 

Q8. If two ideal dice are rolled once, what is the probability of getting at least one '6'?

(a) 
$$\frac{11}{36}$$
 (b)  $\frac{1}{36}$  (c)  $\frac{10}{36}$  (d)  $\frac{5}{36}$ 

Q9. What is the maximum number of extrema of the function  $f(x) = P_k(x)e^{-\left(\frac{x^4}{4} + \frac{x^2}{2}\right)}$  where  $x \in (-\infty, \infty)$  and  $P_k(x)$  is an arbitrary polynomial of degree k? (a) k+2 (b) k+6 (c) k+3 (d) k

Q10, A chain of mass M and length L is suspended vertically with its lower end touching a weighing scale. The chain is released and falls freely onto the scale. Neglecting the size of the individual links, what is the reading of the scale when a length x of the chain has fallen?

(a) 
$$\frac{Mgx}{L}$$
 (b)  $\frac{2Mgx}{L}$  (c)  $\frac{3Mgx}{L}$  (d)  $\frac{4Mgx}{L}$ 

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

<u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q11. For non-interacting Fermions in d-dimensions, the density of states D(E) varies as  $E^{\left(\frac{d}{2}-1\right)}$ . The Fermi energy  $E_F$  of an N particle system in 3-, 2- and 1-dimensions
will scale respectively as,

(a) 
$$N^2$$
,  $N^{2/3}$ ,  $N$   
(b)  $N$ ,  $N^{2/3}$ ,  $N^2$   
(c)  $N$ ,  $N^2$ ,  $N^{2/3}$   
(d)  $N^{2/3}$ ,  $N$ ,  $N^2$ 

Q12. A particle of mass *m* moves in 1-dimensional potential V(x), which vanishes at infinity. The exact ground state eigenfunction is  $\psi(x) = A \operatorname{such}(\lambda x)$  where A and  $\lambda$  are constants. The ground state energy eigenvalue of this system is,

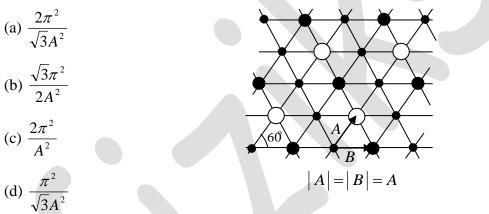
(a) 
$$E = \frac{\hbar^2 \lambda^2}{m}$$
  
(b)  $E = -\frac{\hbar^2 \lambda^2}{m}$   
(c)  $E = -\frac{\hbar^2 \lambda^2}{2m}$   
(d)  $E = \frac{\hbar^2 \lambda^2}{2m}$ 

Q13. Consider a spin  $-\frac{1}{2}$  particle characterized by the Hamiltonian  $H = \omega S_z$ . Under a perturbation  $H' = gS_x$ , the second order correction to the ground state energy is given by,

(a) 
$$-\frac{g^2}{4\omega}$$
 (b)  $\frac{g^2}{4\omega}$  (c)  $-\frac{g^2}{2\omega}$  (d)  $\frac{g^2}{2\omega}$ 

- Q14. Given that  $\psi_1$  and  $\psi_2$  are eigenstates of a Hamiltonian with eigenvalues  $E_1$  and  $E_2$  respectively, what is the energy uncertainty in the state  $(\psi_1 + \psi_2)$ ?
  - (a)  $-\sqrt{E_1E_2}$ (b)  $\frac{1}{2}|E_1 - E_2|$ (c)  $\frac{1}{2}(E_1 + E_2)$ (d)  $\frac{1}{\sqrt{2}}|E_2 - E_1|$

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16




Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q15. An ideal gas is compressed adiabatically from an initial volume V to a final volume  $\alpha V$  and a work W is done on the system in doing so. The final pressure of the gas will be

$$\begin{pmatrix} \gamma = \frac{C_P}{C_V} \end{pmatrix}$$
(a)  $\frac{W}{V^{\gamma}} \frac{1 - \gamma}{\alpha - \alpha^{\gamma}}$ 
(b)  $\frac{W}{V^{\gamma}} \frac{\gamma - 1}{\alpha - \alpha^{\gamma}}$ 
(c)  $\frac{W}{V} \frac{1 - \gamma}{\alpha - \alpha^{\gamma}}$ 
(d)  $\frac{W}{V} \frac{\gamma - 1}{\alpha - \alpha^{\gamma}}$ 

Q16. What is the area of the irreducible Brillouin zone of the crystal structure as given in the figure?



Q17. A particle in thermal equilibrium has only 3 possible states with energies  $-\epsilon$ ,  $0, \epsilon$ . If the system is maintained at a temperature  $T >> \frac{\epsilon}{k_B}$ , then the average energy of the particle can be approximated to,

(a) 
$$\frac{2 \epsilon^2}{3k_B T}$$
 (b)  $\frac{-2 \epsilon^2}{3k_B T}$   
(c)  $\frac{-\epsilon^2}{k_B T}$  (d) 0

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q18. What is the voltage at the output of the following operational amplifier circuit. [See in the figure]? (a) 1V(b) 1mV(c)  $1\mu V$ (d) 1nV(d) 1nV(d) 1nV(e) The average difference between the 2 and 2 a bunch in N is 21 eV. Solve which
- Q19. The energy difference between the 3p and 3s levels in Na is 2.1 eV. Spin-orbit coupling splits the 3p level, resulting in two emission lines differing by 6Å. The splitting of the 3p level is approximately,
  (a) 2 eV
  (b) 0.2eV
  (c) 0.02eV
  (d) 2meV
- Q20. For a 2- dimensional honeycomb lattice as shown in the figure 3, the first Bragg spot occurs for the grazing angle  $\theta_1$  while sweeping the angle from 0°. The next Bragg spot is obtained at  $\theta_2$  given by

(a) 
$$\sin^{-1}(3\sin\theta_1)$$
  
(b)  $\sin^{-1}\left(\frac{3}{2}\sin\theta_1\right)$   
(c)  $\sin^{-1}\left(\frac{\sqrt{3}}{2}\sin\theta_1\right)$   
(d)  $\sin^{-1}(\sqrt{3}\sin\theta_1)$ 

Q21. A spherical shell of inner and outer radii *a* and *b*, respectively, is made of a dielectric material with frozen polarization  $\vec{P}(r) = \frac{k}{r}\hat{r}$ , where *k* is a constant and *r* is the distance from the its centre. The electric field in the region a < r < b is,

(a) 
$$\vec{E} = \frac{k}{\epsilon_0} r \hat{r}$$
  
(b)  $\vec{E} = -\frac{k}{\epsilon_0} r \hat{r}$   
(c)  $\vec{E} = 0$   
(d)  $\vec{E} = \frac{k}{\epsilon_0} r^2 \hat{r}$ 

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



#### Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q22. The electrostatic potential due to a charge distribution is given by  $V(r) = A \frac{e^{-\lambda r}}{r}$  where A and  $\lambda$  are constants The total charge enclosed within a sphere of radius  $\frac{1}{\lambda}$ , with its origin at r = 0 is given by,

(a) 
$$\frac{8\pi \in A}{e}$$
 (b)  $\frac{4\pi \in A}{e}$  (c)  $\frac{\pi \in A}{e}$  (d) 0

Q23. A bike stuntman rides inside a well of frictionless surface given by  $z = a(x^2 + y^2)$ , under the action of gravity acting in the negative z direction.  $\vec{g} = -g\hat{z}$  What speed should he maintain to be able to ride at a constant height  $z_0$  without falling down?

- (a)  $\sqrt{gz_0}$
- (b)  $\sqrt{3gz_0}$
- (c)  $\sqrt{2gz_0}$

(d) The biker will not be able to maintain a constant height, irrespective of speed.

Q24. A particle of mass *m* is confined in a potential well given by V(x) = 0 for  $\frac{-L}{2} < x < \frac{L}{2}$ L/2 and  $V(x) = \infty$  elsewhere. A perturbing potential H'(x) = ax has been applied to the system. Let the first and second order corrections to the ground state be  $E_0^{(1)}$  and  $E_0^{(2)}$ , respectively. Which one of the following statements is correct?

(a)  $E_0^{(1)} < 0$  and  $E_0^{(2)} > 0$ (b)  $E_0^{(1)} = 0$  and  $E_0^{(2)} > 0$ (c)  $E_0^{(1)} > 0$  and  $E_0^{(2)} < 0$ (d)  $E_0^{(1)} = 0$  and  $E_0^{(2)} < 0$ 

Q25. The Bernoulli polynominals  $B_n(s)$  are defined by,  $\frac{xe^{xs}}{e^x - 1} = \sum B_n(s) \frac{x^n}{n!}$ . Which one of the following relations is true?

(a)  $\frac{xe^{x(1-s)}}{e^x - 1} = \sum B_n(s) \frac{x^n}{(n+1)!}$  (b)  $\frac{xe^{x(1-s)}}{e^x - 1} = \sum B_n(s)(-1)^n \frac{x^n}{(n+1)!}$ (c)  $\frac{xe^{x(1-s)}}{e^x - 1} = \sum B_n(-s)(-1)^n \frac{x^n}{n!}$  (d)  $\frac{xe^{x(1-s)}}{e^x - 1} = \sum B_n(s)(-1)^n \frac{x^n}{n!}$ 

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 <u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



#### Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q26. The skin depth of a metal is dependent on the conductivity  $(\sigma)$  of the metal and the angular frequency  $\omega$  of the incident field. For a metal of high conductivity, which of the following relations is correct? (Assume that  $\sigma \gg \in \omega$ , where  $\in$  is the electrical permittivity of the medium.)

(a) 
$$d \propto \sqrt{\frac{\sigma}{\omega}}$$
 (b)  $d \propto \sqrt{\frac{1}{\sigma\omega}}$   
(c)  $d \propto \sqrt{\sigma\omega}$  (d)  $d \propto \sqrt{\frac{\omega}{\sigma}}$ 

Q27. The blackbody at a temperature of 6000 K emits a radiation whose intensity spectrum peaks at 600 nm. If the temperature is reduced to 300K, the spectrum will peak at,

(a) 
$$120 \mu m$$
 (b)  $12 \mu m$  (c)  $12 mm$  (d)  $120 mm$ 

Q28. The wavelength of red helium-neon laser in air is 6328Å. What happens to its frequency in glass that has a refractive index of 1.50?

- (a) Increases by a factor of 3
- (b) Decreases by a factor of 1.5
- (c) Remains the same
- (d) Decreases by a factor of 0.5
- Q29. Which of the following excited states of a hydrogen atom has the highest lifetime?
  - (a) 2p (b) 2s (c) 3s (d) 3p
- Q30. The Lagrangian of a particle is given by  $L = \dot{q}^2 q\dot{q}$ . Which of the following statements is true?
  - (a) This is a free particle
  - (b) The particle is experiencing velocity dependent damping
  - (c) The particle is executing simple harmonic motion
  - (d) The particle is under constant acceleration.

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

<u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q31. A particle moving under the influence of a potential  $V(r) = \frac{kr^2}{2}$  has a wavefunction  $\psi(r,t)$ . If the wavefunction changes to  $\psi(\alpha r,t)$ , the ratio of the average final kinetic energy to the initial kinetic energy will be,

(a) 
$$\frac{1}{\alpha^2}$$
 (b)  $\alpha$  (c)  $\frac{1}{\alpha}$  (d)  $\alpha^2$ 

Q32. How is your weight affected if the Earth suddenly doubles in radius, mass remaining the same?

(a) Increases by a factor of 4

- (b) Increases by a factor of 2
- (c) Decreases by a factor of 4
- (d) Decreases by a factor of 2
- Q33. The approximate force exerted on a perfectly reflecting mirror by an incident laser beam of power 10 mW at normal incidence is

(a)  $10^{-13}N$  (b)  $10^{-11}N$  (c)  $10^{-9}N$  (d)  $10^{-15}N$ 

Q34. Which of the following statements is true for the energies of the terms of the carbon atom in the ground state electronic configuration  $1s^2 2s^2 2p^2$ ?

(a) 
$${}^{3}P < {}^{1}D < {}^{1}S$$
  
(b)  ${}^{3}P < {}^{1}S < {}^{1}D$   
(c)  ${}^{3}P < {}^{1}F < {}^{1}S$   
(d)  ${}^{3}P < {}^{1}F < {}^{1}D$ 

Q35. The entropy-temperature diagram of two Carnot engines, A and B, are shown in the figure 4. The efficiencies of the engines are  $\eta_A$  and  $\eta_B$  respectively. Which one of the following equalities is correct?

| (a) | $\eta_{\scriptscriptstyle A}$ | $=\frac{\eta_B}{2}$            |
|-----|-------------------------------|--------------------------------|
| (b) | $\eta_{\scriptscriptstyle A}$ | $=\eta_{\scriptscriptstyle B}$ |
| (c) | $\eta_{\scriptscriptstyle A}$ | $=3\eta_B$                     |

(d)  $\eta_A = 2\eta_B$ 

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 <u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



#### Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q36. The reference voltage of an analog to digital converter is 1V. The smallest voltage step that the converter can record using a 12-bit converter is, (a) 0.24V(b) 0.24 mV(c)  $0.24 \mu V$ (d) 0.24 nVQ37. A spring of force constant k is stretched by x. It takes twice as much work to stretch a second spring by  $\frac{x}{2}$ . The force constant of the second spring is, (a) k(b) 2k (c) 4k (d) 8k Q38. Which of the following expressions represents an electric field due to a time varying magnetic field? (b)  $K(x\hat{x} + y\hat{y} - z\hat{z})$ (a)  $K(x\hat{x} + y\hat{y} + z\hat{z})$ (d)  $K(y\hat{y} - x\hat{y} + 2z\hat{z})$ (c)  $K(x\hat{x} - y\hat{y})$ In Millikan's oil drop experiment the electronic charge e could be written as  $k\eta^{1.5}$ , where Q39.  $\kappa$  is a function of all experimental parameters with negligible error. If the viscosity of air  $\eta$  is taken to be 0.4% lower than the actual value, what would be the error in the calculated value of e? (a) 1.5% (b) 0.7%  $(c)_{0.6\%}$ (d) 0.4% Given the tight binding dispersion relation  $E(k) = E_0 + A \sin^2\left(\frac{ka}{2}\right)$ , where  $E_0$  and A are Q40. constants and a is the lattice parameter. What is the group velocity of an electron at the second Brillouin zone boundary? (c)  $\frac{2a}{h}$ (d)  $\frac{a}{2h}$ (b)  $\frac{a}{h}$ (a) 0 Q41. The total number of  $Na^+$  and  $Cl^-$  ions per unit cell of NaCl is, (a) 2 (b)4(c) 6(d) 8 if a Hamiltonian H is given as  $H = |0\rangle\langle 0| - |1\rangle\langle 1| + i(|0\rangle\langle 1| - |1\rangle\langle 0|)$ , where  $|0\rangle$  and  $|1\rangle$  are Q42. orthonormal states, the eigenvalues of H are (c)  $\pm \sqrt{2}$ (d)  $\pm i\sqrt{2}$ (a) ±1 (b)  $\pm i$ 

Head office

fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office

Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



#### Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q43. The stable nucleus that has  $\frac{1}{3}$  the radius of <sup>189</sup> Os nucleus is,
  - (a) Li (b)  ${}^{16}O$  (c)  ${}^{4}He$  (d)  ${}^{14}N$
- Q44. A charged particle is released at time t = 0, from the origin in the presence of uniform static electric and magnetic fields given by  $E = E_0 \hat{y}$  and  $B = B_0 \hat{z}$  respectively. Which of the following statements is true for t > 0?
  - (a)The particle moves along the x-axis.
  - (b) The particle moves in a circular orbit.
  - (c) The particle moves in the (x, y) plane.
  - (d) particle moves in the (y, z) plane
- Q45. Consider the differential equation  $G'(x) + kG(x) = \delta(x)$ ; where k is a constant. Which following statements is true?
  - (a) Both G(x) and G'(x) are continuous at x = 0.
  - (b) G(x) is continuous at x = 0 but G'(x) is not.
  - (c) G(x) is discontinuous at x = 0.
  - (d) The continuity properties of G(x) and G'(x) at x = 0 depends on the value of k.

Q46. The sum 
$$\sum_{m=1}^{99} \frac{1}{\sqrt{m+1} + \sqrt{m}}$$
 is equal to

(a) 9 (b)  $\sqrt{99} - 1$  (c)  $\frac{1}{(\sqrt{99} - 1)}$  (d) 11

Q47. Let  $\lambda$  be the wavelength of incident light. The diffraction pattern of a circular aperture of dimension  $r_0$  will transform from Fresnel to Fraunhofer regime if the screen distance z is,

(a) 
$$z \gg \frac{r_0^2}{\lambda}$$
 (b)  $z \gg \frac{\lambda^2}{r_0}$  (c)  $z \ll \frac{\lambda^2}{r_0}$  (d)  $z \ll \frac{r_0^2}{\lambda}$ 

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16



Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q48. For the logic circuit shown in figure 5, the required input condition (A, B, C) to make the output (X) = 1 is,

(a)1,0,1

- (b) 0,0,1
- (c) 1,1,1
- (d) 0,1,1

 $A \bullet U1$   $B \bullet U1$  XOR  $U3 \bullet X$  AND  $C \bullet U2$  XNOR

Q49. The reaction  $e^+ + e^- \rightarrow \gamma$  is forbidden because,

(a) lepton number is not conserved

(b) linear momentum is not conserved

(c) angular momentum is not conserved

- (d) charge is not conserved
- Q50. Electrons of mass m in a thin, long wire at a temperature T follow a one-dimensional Maxwellian velocity distribution. The most probable speed of these electrons is,

(a) 
$$\sqrt{\left(\frac{kT}{2\pi m}\right)}$$
 (b)  $\sqrt{\left(\frac{2kT}{m}\right)}$  (c) 0 (d)  $\sqrt{\left(\frac{8kT}{\pi m}\right)}$ 

<u>Head office</u> fiziks, H.No. 23, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16