

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

1. Ordinary Differential Equations

The order of a differential equation is the order of the highest derivative that appears in the equation.

For example,

 $y' = \cos x$ (First order differential equation),

y'' + 4y = 0 (Second order differential equation),

 $x^2 y''' y' + 2 y'' = x^2 y^2$ (Third order differential equation)

The first-order differential equations contains only y' and may contain y and given functions of x. Hence we can write

....(1)

$$F(x, y, y') = 0 \text{ or } y' = f(x, y)$$

Concept of Solution

A solution of a given first-order differential equation (1) on some open interval a < x < bis a function y = h(x) that has derivative y' = h'(x) and satisfies (1) for all x in that interval. Thus equation (1) becomes an identity if we replace the unknown function y by h(x) and y' by h'(x).

Example: Verify that $y = x^2$ is a solution of xy' = 2y for all x.

Substitute $y = x^2$ and y' = 2x into $xy' = x \times 2x = 2x^2 = 2y$, an identity in x.

Implicit Solution:

Sometimes a solution of differential equation will appear as an implicit function, i.e.

$$H(x, y) = 0$$

and is called an implicit solution, in contrast to an explicit solution y = h(x).

Example: The function *y* of *x* implicitly given by $x^2 + y^2 - 1 = 0$ (*y* > 0), represents a semicircle of unit radius in the upper-half plane. This function is an implicit solution of the differential equation yy' = -x on the interval -1 < x < 1.

General and Particular Solution:

Consider the differential equation $y' = \cos x$.

Its solution will be $y = \sin x + c$ where c is an arbitrary constant. Such a function involving an arbitrary constant is called a **general solution** of a first order differential equation.

If we choose specific c(c=2 or 0 or -5/3, etc), we obtain what is called a **particular** solution of that equation.

Thus $y = \sin x + c$ is a general solution of $y' = \cos x$, and $y = \sin x$, $y = \sin x - 2$, $y = \sin x + 0.75$, etc. are particular solutions.

Singular Solution:

A differential equation may sometimes have an additional solution that can not be obtained from the general solution and is then called a singular solution.

For example, $y'^2 - xy' + y = 0$ has the general solution $y = cx - c^2$. Substitution also shows that the $y = \frac{x^2}{4}$ is also a solution. This is a singular solution because we cannot

obtain it from $y = cx - c^2$ by choosing a suitable c.

Initial Value Problems

A differential equation together with an initial condition is called an **initial value problem.** It is of the form

$$y' = f(x, y), \qquad y(x_0) = y_0$$

The initial condition $y(x_0) = y_0$ is used to determine a value of c in the general solution.