

ALL INDIA TEST SERIES

IIT - JAM – 2025 (Physics)

Full Length Test – 01

TIME: 3 HOURS MAXIMUM MARKS: 100

Section A: This section contains a total of 30 Multiple Choice Questions (**MCQ**) carrying one or two marks each. Each MCQ type question has four choices out of which only one choice is the correct answer.

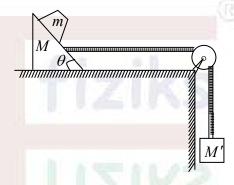
There will be negative marking @ $\frac{1}{3}^{rd}$ for one marks MCQ and $\frac{2}{3}^{rd}$ negative marks for two marks MCQ for each wrong answer.

Section B: This section contains a total of 10 Multiple Select Questions (**MSQ**) carrying two marks each. Each MSQ type question is similar to MCQ but with a difference that there may be one or more than one choice(s) that are correct out of the four given choices. The candidate gets full credit if he/she selects all the correct answers only and no wrong answers.

Section C: This section contains a total of 20 Numerical Answer Type (**NAT**) questions carrying one or two marks each. For these NAT type questions, the answer is a signed real number which needs to be entered using the virtual keyboard on the monitor. No choices will be shown for these types of questions.

Note: There will be no negative marking for Section B and Section C.

Q1-Q10 Carry One Mark each. (1/3 negative marks for each wrong answer)


The electrostatic potential inside a charged spherical ball is given by $\phi = ar^2 + b$ where r **Q1.** is the distance from the centre; a, b are constants. Then the charge density inside ball is

(a) $-6a\varepsilon_0 r$

(b) $-24\pi a \varepsilon_0 r$ (c) $-6a \varepsilon_0$

(d) $-24\pi a\varepsilon_0 r$

Three blocks of masses m, M and M' are arranged as shown in figure. All surfaces are **Q2.** frictionless, pulley and strings are ideal. The mass M' of the hanging block which will prevent the smaller block (m) from shipping over the wedge will be:

(a) $\frac{M+m}{\cot\theta-1}$

(b) $\frac{M-m}{\cot\theta-1}$

(c) $\frac{M+m}{\cot\theta+1}$

(d)
$$\frac{M-m}{M+m} \tan \theta$$

The Laplace transform of $t^2u(t-3)$ is given by Q3.

(a) $e^{-3s} \left[\frac{2}{s^3} - \frac{6}{s^2} + \frac{9}{s} \right]$ (b) $e^{-3s} \left[\frac{2}{s^3} + \frac{6}{s^2} - \frac{9}{s} \right]$

(c) $e^{-3s} \left[\frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s} \right]$

(d)
$$-e^{-3s} \left[\frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s} \right]$$

Q4. For a binary half subtractor having two input A and B, the correct set of logical expression for the output D = (A - B) and X (borrow) are

(a) $D = AB + \overline{A}\overline{B}$, $X = \overline{A}B$

(b) $D = \overline{A}B + A\overline{B}$, $X = A\overline{B}$

(c) $D = \overline{A}B + A\overline{B}$, $X = \overline{A}B$

- (d) $D = AB + \overline{A}\overline{B}, X = A\overline{B}$
- Q5. If heat is supplied to an ideal gas in an isothermal process, then which of the following is correct?
 - (a) the internal energy of the gas will increase
 - (b) the gas will do positive work
 - (c) the gas will do negative work
 - (d) the process is not possible

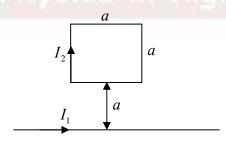
IIT - JAM – 2025 (Physics) Full Length Test - 01

Physics by fiziks Learn Physics in Right Way

- The maximum kinetic energy of photoelectrons emitted from a surface when photons of **Q6.** energy 6eV fall on it is 4eV. The stopping potential, in volts, is
 - (a) 2
- (b) 4

- (d) 10
- The intensity distribution due to Fraunhofer diffraction at a single slit is represented by **Q7.**
 - (a) $A^2 \frac{\sin^2 \beta}{\beta^2}$

(b) $4A^2 \frac{\sin^2 \beta}{\beta^2} \cos^2 r$

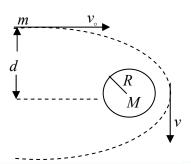

(c) $A^2 \frac{\sin^2 \beta}{\beta^2} N^2$

- (d) $A^2 \frac{\sin^2 \beta}{\beta^2} \frac{\sin^2 Nr}{\sin^2 r}$
- If $I = \sqrt{-1}$, then $4 + 5\left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3\left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$ is **Q8.**
 - (a) $1 i\sqrt{3}$
- (b) $-1+i\sqrt{3}$ (c) $i\sqrt{3}$
- (d) $-1\sqrt{3}$
- The mutually perpendicular waves $E_x = 10\sin(20\pi t)$ and $E_y = 25\cos(10\pi t + \pi/4)$ is **Q9.** superimposed. The frequency of the combined motion is
 - (a) 7*Hz*
- (b) 7.2 Hz
- (c) 7.5 Hz
- (d) 8*Hz*
- A given point in space the total light wave is composed of three phasons Q10. $P_1 = a$, $P_2 = \frac{a}{2}e^{i\theta}$ and $P_3 = \frac{a}{2}e^{-i\theta}$. The intensity of light at this point is
 - (a) $4a^2 \cos^2(\frac{\theta}{2})$ (b) $4a^2 \cos^4(\frac{\theta}{2})$ (c) $a^2 \cos^2(\theta)$ (d) $4a^2 \cos^2(2\theta)$

Multiple Choice Questions (MCQ)

Q11-Q30 Carry Two Mark each. (1/3 negative marks for each wrong answer)

A square loop is placed near an infinite straight wire as shown in figure. The loop and wire carry a steady current I_2 and I_1 respectively. Then the force acting on the square loop is:


(a) $\frac{\mu_0 I_1 I_2}{2\pi a}$

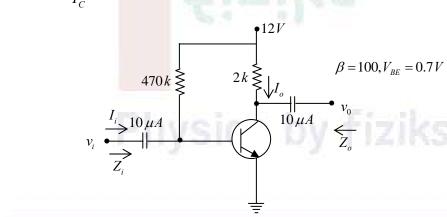
(b) $\frac{\mu_0 I_1 I_2}{4\pi a}$

(c) $\frac{\mu_0 I_1 I_2}{2\pi}$

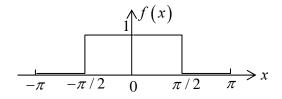
(d) $\frac{\mu_0 I_1 I_2}{4\pi}$

An asteroid is moving towards a planet of mass M and radius R, from a long distance Q12. with initial speed v_0 and impact parameter d. The minimum value of v_0 such that the asteroid does not hit the planet is:

(a)
$$v_0 = \sqrt{\frac{2GMR}{d^2 - R^2}}$$


(b)
$$v_0 = \sqrt{\frac{GMR}{d^2 - R^2}}$$

(c)
$$v_0 = \sqrt{\frac{GMR}{2(d^2 - R^2)}}$$


$$(d) v_0 = \sqrt{\frac{GMR}{d^2}}$$

Q13. For the network shown in figure the voltage gain is:

$$(\operatorname{use} r_e = \frac{26\,mV}{I_C}, r_o = \infty)$$

- (a) ≈ -187
- (b) ≈ -280
- (c) ≈ -320
- (d) ≈ -350
- What is the speed v_n of the electron in the nth Bohr orbit of hydrogen atom, if v_1 is the Q14. speed of the electron in the first Bohr orbit?
 - (a) $v_1 n$
- (b) $v_1 n^3$
- (c) $\frac{v_1}{n}$ (d) $\frac{v_1}{n^3}$
- The Fourier series of the periodic function f(x) having period 2π as shown in figure:

(a)
$$f(x) = \frac{1}{2} - \frac{2}{\pi} \left[\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - + \dots \right]$$

(b)
$$f(x) = \frac{1}{2} + \frac{2}{\pi} \left[\cos x + \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - + \dots \right]$$

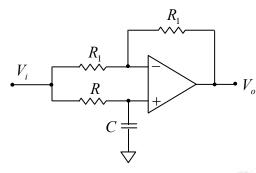
(c)
$$f(x) = -\frac{1}{2} + \frac{2}{\pi} \left[\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - + \dots \right]$$

(d)
$$f(x) = \frac{1}{2} + \frac{2}{\pi} \left[\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - + \dots \right]$$

- At equilibrium, there cannot be any free charge inside a metal. However, if you forcibly Q16. put charge in the interior then it takes some finite time to 'disappear' i.e. move to the surface. If the conductivity σ of a metal is $10^6 (\Omega m)^{-1}$ and the permittivity $\varepsilon = 8.85 \times 10^{-12}$ Farad/m, this time will be approximately:
 - (a) 10^{-5} sec
- (b) 10^{-11} sec (c) 10^{-9} sec
- (d) 10^{-17} sec
- The dispersion law for a certain type of wave motion is $\omega = (c^2k^2 + m^2)^{\frac{1}{2}}$, where ω is Q17. the angular frequency, k is the magnitude of the propagation vector, and c and m are constants. The group velocity of these waves approaches
 - (a) infinity as $k \to 0$ and zero as $k \to \infty$
 - (b) infinity as $k \to 0$ and c as $k \to \infty$
 - (c) zero as $k \to 0$ and infinity as $k \to \infty$
 - (d) zero as $k \to 0$ and c as $k \to \infty$
- A square matrix 3×3 is given by $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ is diagonalized in eigenvector of matrix

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
. Which one of the following is matrix A in the diagonal form in

the basis of S?


(a)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

IIT - JAM – 2025 (Physics) Full Length Test – 01

Physics by fiziks

Learn Physics in Right Way

Consider the Op-Amp circuit shown in figure. If $V_i = V_1 \sin(\omega t)$ and $V_o = V_2 \sin(\omega t + \phi)$, Q19. then the minimum and maximum value of ϕ (in radians) are respectively

- (a) $-\frac{\pi}{2}$ and $+\frac{\pi}{2}$ (b) 0 and $+\frac{\pi}{2}$
- (c) $-\pi$ and 0 (d) $-\frac{\pi}{2}$ and 0
- **Q20.** If u = x + y + z, 2v = xyz, w = vx The Jacobian $\frac{\partial(u, v, \omega)}{\partial(x, y, z)}$. At the point x = 1, y = 2, z = 1.
 - $(a)\frac{1}{2}$

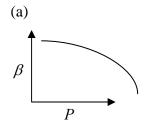
- (d)2
- Q21. A particle is moving in one dimension is a stationary state whose wave function

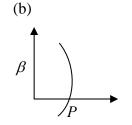
$$\psi(x) = \begin{cases} 0 & x < -a \\ A\left(1 + \cos\frac{\pi x}{a}\right) - a \le x \le a \\ 0 & x > a \end{cases}$$
of A such that $\psi(x)$ is normalized?

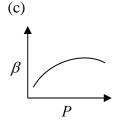
What is value of A such that $\psi(x)$ is normalized?

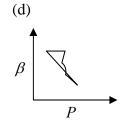
- (a) $\sqrt{\frac{2}{a}}$

- (b) $\sqrt{\frac{1}{a}}$ (c) $\sqrt{\frac{2}{2a}}$ (d) $\sqrt{\frac{1}{2a}}$
- When unpolarised light is incident on a glass plate at a particular angle, it is observed that **O22.** the reflected beam is linearly polarized. What is the angle of the refracted beam with respect to the surface normal?
 - (a) 56.7°
 - (b) 33.4°
 - (c) 23.3°
 - (d) The light is completely reflected and there is no refracted beam.


fiziks fiziks


IIT - JAM – 2025 (Physics) Full Length Test – 01


Physics by fiziks


Learn Physics in Right Way

Which of the following graphs correctly represents the variation of isothermal Q23. compressibility (β_r) with P for an ideal gas at constant temperature?

A simple pendulum attached to the ceiling of stationary lift has a time period T. When the lift moves upward with distance covered as $y = (1.5m/s^2)t^2$, the time period of the pendulum will be

(a)
$$\sqrt{10/13}T$$

(b)
$$\sqrt{6/5}T$$
 (c) $\sqrt{5/7}T$

(c)
$$\sqrt{5/7}T$$

(d)
$$\sqrt{5/6}T$$

Q25. Consider a particle of mass m moving in one dimension under a force with potential $U(x) = k(2x^3 - 5x^2 + 4x)$ where k > 0. If the particle oscillates about the stable equilibrium point then Time period of oscillation is given by

(a)
$$2\pi\sqrt{\frac{2m}{k}}$$
 (b) $\pi\sqrt{\frac{2m}{k}}$ (c) $2\pi\sqrt{\frac{m}{k}}$

(b)
$$\pi \sqrt{\frac{2m}{k}}$$

(c)
$$2\pi\sqrt{\frac{m}{k}}$$

(d)
$$\pi \sqrt{\frac{m}{k}}$$

Q26. The internal energy E(T) of a system at a fixed volume is found to depend on the temperature T as $E(T) = \frac{aT^2}{2} + \frac{bT^4}{4}$. Then the entropy S(T), as a function of

(a)
$$\frac{1}{2}aT^2 + \frac{1}{4}bT^4$$
 (b) $2aT^2 + 4bT^4$ (c) $2aT + \frac{4}{3}bT^3$ (d) $aT + \frac{bT^3}{3}$

(b)
$$2aT^2 + 4bT^4$$

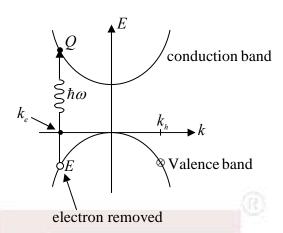
(c)
$$2aT + \frac{4}{3}bT^{3}$$

(d)
$$aT + \frac{bT^3}{3}$$

The solution of $(D^2 - 4D + 3)y = 3e^x \cos 2x$ is given by

(a)
$$\Rightarrow y = c_1 e^x + c_2 e^{3x} - \frac{3}{8} e^x (\cos 2x - \sin 2x)$$

(b)
$$\Rightarrow y = c_1 e^x + c_2 e^{3x} - \frac{3}{8} e^x (\cos 2x + \sin 2x)$$


(c)
$$\Rightarrow y = c_1 e^x + c_2 e^{3x} - \frac{3}{8} e^{-x} (\cos 2x + \sin 2x)$$

(d)
$$\Rightarrow y = c_1 e^{-x} + c_2 e^{-3x} - \frac{3}{8} e^x (\cos 2x + \sin 2x)$$

IIT - JAM - 2025 (Physics) Full Length Test – 01

Physics by fiziks Learn Physics in Right Way

Q28. Which of the following correctly represent the relation between electron and holes for given condition and valence band?

- (a) $k_h = -k_e$
- (b) $v_h = -v_e$
- (c) $m_h = m_e$
- (d) $E_h = E_e$
- **O29.** Eight spherical rain drops of the same mass and radius are falling down with a terminal speed of 6cms⁻¹. If they coalesce to from one big drop, what will be its terminal speed? Neglect the buoyancy due to air.
 - (a) $1.5 \, cm s^{-1}$
- (b) $6cms^{-1}$ (c) $24cms^{-1}$
- (d) $32 \, cm s^{-1}$
- Two radioactive materials x_1 and x_2 have decay constant 10λ and λ respectively. If Q30. initially they have the same number of nuclei, then the ratio of the number of nuclei of x_1 to that of x_2 , will be 1/e after a time:
 - (a) $\frac{1}{10\lambda}$
- (b) $\frac{1}{11\lambda}$
- (d) $\frac{1}{9\lambda}$

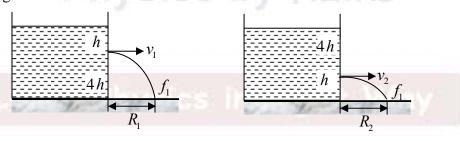
Multiple Select Type Questions (MSQ)

Q31-Q40 Carry Two Marks each (No negative marking for any wrong answer)

- A charge q is placed at the centre of an otherwise neutral dielectric sphere of radius a and relative permittivity ε_r . We denote the expression $q/4\pi\varepsilon_0 r^2$ by E(r). Which of the following statements are true?
 - (a) The electric field inside the sphere, r < a, is given by $E(r)/\varepsilon_r$
 - (b) The field outside the sphere, r > a, is given by E(r)
 - (c) The total charge inside a sphere of radius r > a is given by q.
 - (d) The total charge inside a sphere of radius r < a is given by q.

 α is a constant

IIT - JAM – 2025 (Physics) Full Length Test – 01

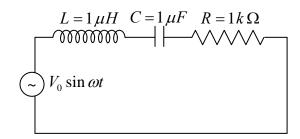

Physics by fiziks Learn Physics in Right Way

- Q32. In a one-dimensional harmonic oscillator, ϕ_0 , ϕ_1 and ϕ_2 are respectively the ground, first and the second excited states. These three states are normalized and are orthogonal to one another. ψ_1 and ψ_2 are two states defined by $\psi_1 = \phi_0 2\phi_1 + 3\phi_2$, $\psi_2 = \phi_0 \phi_1 + \alpha\phi_2$, where
 - (a) The value of α , when ψ_1 is orthogonal to ψ_2 is 1
 - (b) The value of α , when ψ_1 is orthogonal to ψ_2 is -1
 - (c) For the value of α determined, when ψ_1 and ψ_2 are orthogonal, the average value of state ψ_2 is $3\hbar\omega$
 - (d) For the value of α determined ψ_1 and ψ_2 are orthogonal average value on state ψ_2 is $\frac{3}{2}\hbar\omega$
- Q33. Consider the following statements related to kinetic theory of gases. Which of the following options is/are correct?
 - (a) The molecules of a gas are all alike in size and shape and are hard, smooth, spherical particles.
 - (b) The size of the molecules is very small compared to the volume occupied by the gas.
 - (c) The molecules exert no appreciable force on one another except during a collision.
 - (d) The collisions of the molecules with the walls of the vessel are inelastic.
- **Q34.** Pick out the correct alternative (s)
 - (a) The radius of gyration of a thin disc about any diameter is $\frac{R}{2}$, where R is the radius of the disc.
 - (b) The radius of gyration of a circular disc about a tangent in its plane is $\frac{\sqrt{5}}{2}R$, where R is the radius of the disc.
 - (c) The radius of gyration of a thin rod about an axis through its one end and perpendicular to the rod is $\frac{L}{\sqrt{3}}$, where L is the length of the rod.
 - (d) The radius of gyration of a rectangular lamina of sides l and b about an axis through its centre and perpendicular to its plane is $\frac{1}{2}\sqrt{\frac{l^2+b^2}{3}}$.

IIT - JAM – 2025 (Physics) Full Length Test – 01

Physics by fiziks

- Learn Physics in Right Way
- The relation between the nuclear radius (R) and mass number (A), given by Q35. $R = 1 \cdot 2A^{1/3}$ fm, implies that
 - (a) The central density of nuclei is independent of A.
 - (b) The volume energy per nucleon is a constant.
 - (c) The attractive part of the nuclear force has a long range.
 - (d) The nuclear force is charge independent.
- Q36. A steady current I flows along an infinitely long hollow cylindrical conductor of radius R. This cylinder is placed coaxially inside an infinite solenoid of radius 2R. The solenoid has n turns per unit length and carries a steady current I. Consider a point P at a distance r from the common axis. The correct statement(s) is (are)
 - In the region 0 < r < R, the magnetic field is non-zero (a)
 - (b) In the region R < r < 2R, the magnetic field is along the common axis.
 - In the region R < r < 2R, the magnetic field is tangential to the circle of radius r, (c) centered on the axis.
 - In the region r > 2R, the magnetic field is non-zero. (d)
- O37. Which of the following statement is correct about interference in reflected wave?
 - (a) reflected wave interfere due to path length differences
 - (b) reflected wave can also interfere when path length is also constant
 - (c) reflected wave can also interfere due to phase changes upon reflection
 - (d) reflected wave can also interfere even when there is no phase changes upon reflection
- In two figures Q38.


- (a) $v_1/v_2 = 2$
- (b) $v_1/v_2 = 1/4$
- (c) $R_1 = R_2$
- (d) $t_1/t_2 = 2$
- Q39. Which of the following statements are correct for a monochromatic wave?
 - (a) Wave speed is affected by changing frequency
 - (b) Amplitude of a wave is unrelated to the wave speed
 - (c) Doubling the amplitude of the wave causes the power to be larger by a factor of 4
 - (d) Changing the amplitude of wave changes to the frequency of the wave.
 - (d) wave frequency ω is independent of amplitude 'a'. This is a wrong option

fiziks Liziks

IIT - JAM – 2025 (Physics) Full Length Test – 01

Physics by fiziks Learn Physics in Right Way

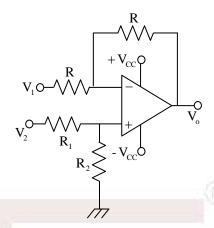
Q40. In the circuit shown $L = 1\mu H$, $C = 1\mu F$ and $R = 1k\Omega$. They are connected in series with an a.c. source $V = V_0 \sin \omega t$ as shown. Which of the following options is/are correct?

- (a) The frequency at which the current will be in the phase with the voltage is independent of R.
- (b) At $\omega \sim 0$ the current flowing through the circuit becomes nearly zero.
- (c) At $\omega >> 10^6 \, rad \, s^{-1}$, the circuit behave like a capacitor.
- (d) The current will be in phase with the voltage if $\omega = 10^4 \, rad \, s^{-1}$

Numerical Answer Type Questions (NAT)

Q41-Q50 Carry One Mark each (No negative marking for any wrong answer).

- Q41. In a cyclotron, α -particles are accelerated using RF source of frequency 15 MHz. The frequency of RF source if α -particles are replaced by $_{2}He^{3}$ particle is _____MHz
- **Q42.** Two frames, O and O', are in relative motion. O' is moving with respect to O at a speed c/2, where c is the speed of light. In frame O, two separate events occur at (x_1, t_1) and (x_2, t_2) . In frame O', these events occur simultaneously. The value of $(x_2 x_1)/(t_2 t_1)$ is αc then the value of α ______is
- **Q43.** Decimal equivalent of the binary number (1011.111)₂ is_____
- Q44. The muon has mass $105 \, MeV/c^2$ and mean life time $2.2 \, \mu s$ in its rest frame. The mean distance traversed by a muon of energy $315 \, MeV$ before decaying is approximately km
- **Q45.** The flux linked with a coil at instant 't' is given by $\phi = 10t^2 50t + 250$. The magnitude of induced *emf* at t = 3s is______volts
- **Q46.** The number of nearest neighbors for 5thnearest atom is FCC crystal are_____
- **Q47.** Two protons are confined to a cubic box, whose sides have length $10^{-12}m$. The minimum kinetic energy of the $\alpha \times 10^{-17}J$. If the mass of proton is $1.67 \times 10^{-27}kg$ and Planck's constant is $6.63 \times 10^{-34}Js$, then the value of α is_____

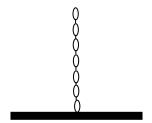

fiziks fiziks

IIT - JAM – 2025 (Physics) Full Length Test – 01

Physics by fiziks

Learn Physics in Right Way

In the following circuit, for the output voltage to be $V_0 = (-V_1 + V_2 / 3)$ the ratio R_1 / R_2 Q48.

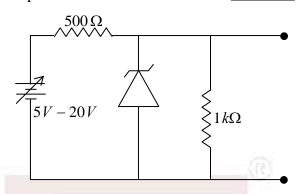


- **Q49.** In YDSE, the two slits act as coherent sources of equal amplitude A and wavelength λ . In another experiment with the same set up, the two slits are sources of equal amplitude A and wavelength λ , but are incoherent. The ratio of intensity of light at the midpoint of the screen in the first case to that in the second case is
- In a typical human body, the amount of radioactive ${}^{40}K$ is 3.24×10^{-5} percent of its mass. Q50. The activity due to ${}^{40}K$ in a human body of mass $70 \, kg$ is ______ kBq. (Round of to 2 decimal places) Half life of $^{40}K = 3.942 \times 10^6 \text{ sec}$, Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Numerical Answer Type Questions (NAT)

Q51-Q60 Carry Two Mark each (No negative marking for any wrong answer).

- **Q51.** A thin uniform ring carrying charge Q and mass M rotates about its axis. The ratio of magnetic dipole moment to the angular momentum of this ring is $\alpha \frac{Q}{M}$. Then the value of α is_____
- Q52. A uniform chain of mass mand length l hangs on a thread and touches the surface of a table by its lower end. If the force exerted by the table on the chain when half of its length has fallen is αmg , then the value of α is_____ (The fallen part does not form heap).

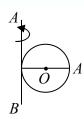


fiziks Lizika

IIT - JAM – 2025 (Physics) Full Length Test – 01

Physics by fiziks Learn Physics in Right Way

Q53. A variable power supply (5V - 20V) is connected to a Zener diode specified by a breakdown voltage of 10V (see figure). The ratio of the maximum power to the minimum power dissipated across the load resistor is ______



- Q54. Three identical spin- $\frac{1}{2}$ fermions are to be distributed in three non-degenerate distinct energy levels. The number of ways this can be done is _____
- Q55. In an experiment on charging of an initially uncharged capacitor, an RC circuit is made with the resistance $R = 10k\Omega$ and the capacitor $C = 1000 \mu F$ along with a voltage source of 3V. The magnitude of the displacement current through the capacitor (in μA), 5 seconds after the charging has started, is ______
- **Q56.** The phase velocity of deep-water wave is given by

$$v^2 = \frac{g\lambda}{2\pi} + \frac{2\pi\sigma}{\rho\lambda}$$

where $g = 9.8 \, ms^{-2}$, $\rho = 1000 \, kgm^{-3}$, and $\sigma = 7.2 \times 10^{-2} \, Nm^{-1}$. The group velocity of the waves in non dispersive medium is ______ cm/\sec .

Q57. A disc of mass 8kg and radius 2m is rotating about the axis AB, that is tangent to the disc. If the linear speed of point A on the periphery of the disc is 20m/s, then the kinetic energy of the disc is ______ J.

Q58. If equation of state is given by $P = \frac{RT}{V - b} \exp\left(-\frac{a}{RTV}\right)$ then critical volume $V_c = \underline{\hspace{1cm}} b$.

IIT - JAM – 2025 (Physics) Full Length Test – 01

Physics by fiziks

Learn Physics in Right Way

- Q59. Two gravitating bodies A and B with masses m_A and m_B , respectively, are moving in circular orbit. Assume that $m_B \gg m_A$ and let the radius of the orbit of body A be R_A . If the body A is losing mass adiabatically, its orbital radius R_A is proportional to $\frac{1}{m_A^{\alpha}}$. Then the value of α is given by ______
- **Q60.** What a tap is closed, the monometer attached to the pipe leads $3.5 \times 10^5 Nm^{-2}$. When the type is opened the reading of monometer falls to $3.0 \times 10^5 Nm^{-2}$. The velocity of water in the pipe is ______ m/s

fiziks

Physics by fiziks

Learn Physics in Right Way