
fiziks
t!క! ${ }^{2}$

Physics by fiziks

Learn Physics in Right Way

JEST Physics-2022
Solution

Be Part of Disciplined Learning

Part-A: 1-Mark Questions

Q2. The probability that you get a sum m from a throw of two identical fair dice is P_{m}. If the dice have 6 (six) faces labeled by $1,2, \ldots 6$, which of the following statements is correct?
(a) $P_{9}=P_{5}$
(b) $P_{9}=P_{4}$
(c) $P_{9}=P_{3}$
(d) $P_{9}=P_{6}$

Ans. 2: (a)

Solution.:

Clearly $P_{5}=P_{9}$. Thus 'a' is correct.

Q12. If θ and ϕ are respectively the polar and azimuthal angles on the unit sphere, what is $\left\langle\cos ^{2}(\theta)\right\rangle$ and $\left\langle\sin ^{2}(\theta)\right\rangle$, where $\langle O\rangle$ denotes the average of O ?
(a) $\left\langle\cos ^{2}(\theta)\right\rangle=2 / 3$ and $\left\langle\sin ^{2}(\theta)\right\rangle=1 / 3$
(b) $\left\langle\cos ^{2}(\theta)\right\rangle=1 / 2$ and $\left\langle\sin ^{2}(\theta)\right\rangle=1 / 2$
(c) $\left\langle\cos ^{2}(\theta)\right\rangle=3 / 4$ and $\left\langle\sin ^{2}(\theta)\right\rangle=1 / 4$
(d) $\left\langle\cos ^{2}(\theta)\right\rangle=1 / 3$ and $\left\langle\sin ^{2}(\theta)\right\rangle=2 / 3$

Ans. 12: (d)

Solution.:

At the surface of unit sphere

$$
\begin{aligned}
& d a=\sin \theta d \theta d \phi(\operatorname{as} R=1) \\
& \left\langle\cos ^{2} \theta\right\rangle=\frac{\iint \cos ^{2} \theta \sin \theta d \theta d \phi}{\iint \sin \theta d \theta d \phi}=\frac{\int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \int_{0}^{2 \pi} d \phi}{4 \pi}=-\left|\frac{\cos ^{3} \theta}{3}\right|_{0}^{\pi} \cdot \frac{2 \not t}{4 \not t} \frac{1}{2}=-\frac{2}{3} \times \frac{1}{2}=\frac{1}{3} \\
& \left\langle\sin ^{2} \theta\right\rangle=\frac{\int_{0}^{\pi} \sin ^{2} \theta \sin \theta d \theta \int_{0}^{2 \pi} d \phi}{\iint \sin \theta d \theta d \phi}=\frac{2 \pi}{4 \pi} \int_{0}^{\pi}\left(1-\cos ^{2} \theta\right) \sin \theta d \theta=\frac{1}{2}\left[|\cos \theta|_{0}^{\pi}-\int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta\right] \\
& =\frac{1}{2}\left[2+\left|\frac{\cos ^{3} \theta}{3}\right|_{0}^{\pi}\right]=\frac{1}{2}\left[2-\frac{2}{3}\right]=\frac{1}{2} \cdot \frac{4}{3}=\frac{2}{3}
\end{aligned}
$$

Thus, (a) is correct.
Q13. The function $f(x)$ shown below has non-zero values only in the range $0<x<a$.

Which of the following figure represents $f(3 x)$?
(a)

(c)

(b)

(d)

Ans. 13: (a)

Solution.:

If $f(x)$ has period " a " then $f(3 x)$ will have period $\frac{a}{3}$.
Maximum value of the function $f(x)$ and $f(3 x)$ will be same.
As $f(x)$ is zero beyond $x=a$, so ' d ' is ruled out.
As for $f[3 x], 3 \cdot \frac{a}{3}$ a [which happens for x beyond $\frac{a}{3}$]
Thus 'a' is correct option.
Q14. Consider a complex function

$$
f(z)=\frac{1}{6 z^{3}+3 z^{2}+2 z+1}
$$

What is the sum of the residues at its poles?
(a) $\frac{i \sqrt{3}}{7}$
(b) $\frac{4}{7}$
(c) $\frac{2}{7}$
(d) 0

Ans. 14: (d)

Solution. :

$f(z)=\frac{1}{6 z^{3}+3 z^{2}+2 z+1}=\frac{1}{3 z^{2}(2 z+1)+1(2 z+1)}=\frac{1}{\left(3 z^{2}+1\right)(2 z+1)}$
Thus poles are $z=-\frac{1}{2}$ and $z= \pm \frac{i}{\sqrt{3}}$

$$
\begin{align*}
\operatorname{Res}\left(z=-\frac{1}{2}\right) & =\frac{1}{\left.\left(6 z^{3}+3 z^{2}+2 z+1\right)\right|_{z=-\frac{1}{2}}}=\frac{1}{\left|18 z^{2}+6 z+2\right|_{z=-\frac{1}{2}}} \\
& =\frac{1}{18 \cdot \frac{1}{4}-6 \cdot \frac{1}{2}+2}=\frac{1}{\frac{9}{2}-3+2}=\frac{1}{\frac{9}{2}-1}=\frac{2}{7} \tag{1}
\end{align*}
$$

$\operatorname{Res}\left(z=\frac{i}{\sqrt{3}}\right)=\frac{1}{\left(6 z^{3}+3 z^{2}+2 z\right)_{z=\frac{i}{\sqrt{3}}}}=\frac{1}{\left|18 z^{2}+6 z+2\right|_{z=\frac{i}{\sqrt{3}}}}=\frac{1}{-\frac{18}{3}+\frac{6 i}{\sqrt{3}}+2}$

$$
\begin{equation*}
=\frac{1}{-6+2 \sqrt{3} i+2}=\frac{1}{-4+2 \sqrt{3} i} \times \frac{-4-2 \sqrt{3} i}{-4-2 \sqrt{3} i}=\frac{-4-2 \sqrt{3} i}{16+12}=\frac{-2 \sqrt{3} i-4}{28} \tag{2}
\end{equation*}
$$

$\operatorname{Res}\left(z=-\frac{i}{\sqrt{3}}\right)=\frac{1}{\left(18 z^{2}+6 z+2\right)_{z=-\frac{i}{\sqrt{3}}}}=\frac{1}{\left|18 z^{2}+6 z+2\right|_{z=-\frac{i}{\sqrt{3}}}}=\frac{1}{-\frac{18}{3}-\frac{6 i}{\sqrt{3}}+2}$

$$
\begin{equation*}
=\frac{1}{-6-2 \sqrt{3} i+2}=\frac{1}{-4-2 \sqrt{3} i} \times \frac{-4+2 \sqrt{3} i}{-4+2 \sqrt{3} i}=\frac{-4+2 \sqrt{3} i}{16+12}=\frac{2 \sqrt{3} i-4}{28} \tag{3}
\end{equation*}
$$

Sum of Residue $=\frac{2}{7}+\frac{-2 \sqrt{3} i-4}{28}+\frac{2 \sqrt{3} i-4}{28}=\frac{2}{7}-\frac{1}{7}-\frac{1}{7}=0$
Q15. Consider a complex number $z=x+i y$. Where do all the zeros of $\cos (z)$ lie?
(a) On the $x=y$ line.
(b) On the $x=0$ line.
(c) On the $y=0$ line.
(d) On the $x=-y$ line.

Ans. 15: (c)
Solution.: $\cos z=0=\cos \left((2 n+1) \frac{\pi}{2}\right) \Rightarrow z=(2 n+1) \frac{\pi}{2} \Rightarrow x+i y=(2 n+1) \frac{\pi}{2} \Rightarrow y=0$
Hence zero's of $\cos z$ will lie on x-axis i.e. $y=0$ line.
Thus, 'c' is correct.

Part-B: 3-Mark Questions

Q10. $G=\left(e, a, a^{2}, b, b a, b a^{2}\right)$ is a group of order $6 . e$ is the identity element and a is of order
3. What could be the order of the element b ?
(a) 3
(b) 2
(c) 1
(d) Can't be determined

Ans. 10: (b)
Solution.: $G=\left\{e, a, a^{2}, b, b a, b a^{2}\right\}$ is of order 6 . Let order of $b=p$
Consider group multiplication table

In the highlighted row, all the elements of the group should be reproduced. b , ba and ba^{2} are already there. Thus
$\mathrm{b}^{2} \quad \rightarrow$
e
$\mathrm{b}^{2} \mathrm{a} \rightarrow$
should be equal to a
$b^{2} \mathrm{a}^{2} \rightarrow$
a^{2}
If $b^{2}=e, b^{2} a=a, b^{2} a^{2}=a^{2}$
All six elements are reproduced. Order of b must be 2 . Thus ' b ' is correct.

Part-C: 2-Mark Numerical Questions

Q7. Let $M=2 \mathrm{I}+\sigma_{x}+i \sigma_{y}+\sigma_{z}$ is a 2×2 square matrix, where, σ_{α} denotes $\alpha^{\text {th }}$ Pauli matrix, and I denotes the 2×2 identity matrix. It is given that $|u\rangle=\binom{1}{0}$ and $|v\rangle=\binom{1}{-1}$ are column vectors. What is the value of $\langle u| \sqrt{M}|v\rangle$?

Ans.: 1.73

Solution. :

$$
\begin{aligned}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \text { and } \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& M=2 \mathrm{I}+\sigma_{x}+i \sigma_{y}+\sigma_{z}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right) \\
& \Rightarrow M=\left(\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right)
\end{aligned}
$$

Eigen values of matrix $M=\left(\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right)$ are $\lambda=1$ and 3 .
We can write $f(M)=\alpha_{0} I+\alpha_{1} M=\sqrt{M}$. Thus $\alpha_{0} I+\alpha_{1} \lambda=\sqrt{\lambda}$.
$\alpha_{0}+\alpha_{1}=1$ and $\alpha_{0}+3 \alpha_{1}=\sqrt{3}$. Solving this we get $\alpha_{0}=\frac{3-\sqrt{3}}{2}$ and $\alpha_{1}=\frac{\sqrt{3}-1}{2}$.
Now $\sqrt{M}=\alpha_{0} I+\alpha_{1} M=\left(\begin{array}{cc}\frac{3-\sqrt{3}}{2} & 0 \\ 0 & \frac{3-\sqrt{3}}{2}\end{array}\right)+\left(\begin{array}{cc}\frac{3 \sqrt{3}-3}{2} & 0 \\ \frac{2 \sqrt{3}-2}{2} & \frac{\sqrt{3}-1}{2}\end{array}\right)$
$\Rightarrow \sqrt{M}=\left(\begin{array}{cc}\frac{3-\sqrt{3}}{2} & 0 \\ 0 & \frac{3-\sqrt{3}}{2}\end{array}\right)+\left(\begin{array}{cc}\frac{3 \sqrt{3}-3}{2} & 0 \\ \frac{2 \sqrt{3}-2}{2} & \frac{\sqrt{3}-1}{2}\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} & 0 \\ \sqrt{3}-1 & 1\end{array}\right)$
$\langle u| \sqrt{M}|v\rangle=\left(\begin{array}{ll}1 & 0\end{array}\right)\left(\begin{array}{cc}\sqrt{3} & 0 \\ \sqrt{3}-1 & 1\end{array}\right)\binom{1}{-1}=\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{\sqrt{3}}{\sqrt{3}-2}=(\sqrt{3})=1.73$

Part-A: 1-Mark Questions

Q1. For a system of unit mass, the dynamical variables follow the relation $\dot{x}^{2}=k x_{0}^{2}+\dot{x}_{0}^{2}-k x^{2}$ where, x is the position of the system at timet, and x_{0} is its initial position. What is the force acting on the system?
(a) $-k\left(x-x_{0}\right)$
(b) $-k x$
(c) $-\frac{1}{2} k\left(x-x_{0}\right)$
(d) $\frac{1}{2} k\left(x-x_{0}\right)^{2}$

Ans. 1: (b)
Solution: Generalised force $Q=\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}}\right)-\frac{\partial T}{\partial x}$
$\because T=\frac{1}{2} \dot{x}^{2}=\frac{1}{2}\left(k x_{0}^{2}+\dot{x}_{0}^{2}-k x^{2}\right) \Rightarrow Q=k x$
Q3. A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_{c} is varying with time t as $a_{c}=k^{2} r t^{2}$ where, k is a constant. The power delivered to the particle by the force acting on it is
(a) $\frac{1}{2} m k^{2} r^{2} t$
(b) $2 \pi m k^{\frac{3}{2}} r^{2}$
(c) $m k^{2} r^{2} t$
(d) 0

Ans. 3: (c)
Solution: For circular motion: $\frac{m v_{\theta}^{2}}{r}=m k^{2} r t^{2}$
$k=\frac{1}{2} m v_{\theta}^{2}=\frac{1}{2} m k^{2} r^{2} t^{2} ; P=\frac{d W}{d t}=\frac{d k}{d t}=m k^{2} r^{2} t$
Q4. The front-end of a train moving with constant acceleration, passes a pole with velocity u, and its back-end passes the pole with velocity v. With what velocity does the mid-point of this train pass the same pole?
(a) $\frac{1}{2} \sqrt{u^{2}+v^{2}}$
(b) $\sqrt{\frac{u^{2}+v^{2}}{2}}$
(c) $\frac{u v}{u+v}$
(d) $\frac{u+v}{2}$

Ans. 4: (b)

Solution:

$a=\frac{v^{2}-u^{2}}{2 L}=\frac{V^{2}-u^{2}}{2(L / 2)} \quad \Rightarrow 2 V^{2}=v^{2}+u^{2} \quad \Rightarrow V=\sqrt{\frac{v^{2}+u^{2}}{2}}$

Part-B: 3-Mark Questions

Q1. A cylinder of radius R is constrained to roll without slipping on a horizontal plane under the action of a constant force F applied d distance above the axis of the cylinder. In the process, it experiences a frictional force f at the point of contact (see figure). For what value of d, the magnitude of f is minimum?
(a) $-R / 2$
(b) R
(c) $R / 2$
(d) $-R$

Ans. 1: (c)
Solution: f will be zero when $d=\frac{I_{C M}}{M R}=\frac{\frac{1}{2} M R^{2}}{M R}=\frac{R}{2}$
Q2. A small object A of mass m is free to slide on the inclined plane of a triangular block B of mass $2 m$ (see figure). Initially both the blocks are motionless. Block A starts sliding under the action of gravity from the highest point of
 block B. What is the speed of block B, when block A hits the floor?
(a) $\frac{1}{2} \sqrt{g l}$
(b) $\frac{1}{3} \sqrt{g l}$
(b) $\sqrt{g l}$
(d) $\frac{2}{3} \sqrt{g l}$

Ans. 2: (b)
Solution: Let v_{1} is the velocity of block A with respect to block B, when it hits the floor.
Let v_{2} is the velocity of block B at the same time.

$v_{A E}=v_{A B}-v_{E B}$
$v_{X}=v_{1} \cos 30^{\circ}-v_{2} ; v_{Y}=v_{1} \sin 30^{\circ} \quad\left(\right.$ Here $\left.^{\circ} v_{B E}=-v_{2}\right)$
v_{X} and v_{Y} are the velocities with respect to earth.
Conservation of linear momentum; $m\left(v_{1} \cos 30^{\circ}-v_{2}\right)-2 m v_{2}=0 \Rightarrow v_{1}=2 \sqrt{3} v_{2}$

Conservation of energy; $m g h=\frac{1}{2} m v_{X}^{2}+\frac{1}{2} m v_{Y}^{2}+\frac{1}{2}(2 m) v_{Z}^{2}$
$\Rightarrow m g h=\frac{1}{2} m\left(v_{1} \cos 30^{\circ}-v_{2}\right)^{2}+\frac{1}{2} m\left(v_{1} \sin 30^{\circ}\right)+m v_{2}^{2}$
$\Rightarrow g h=2 v_{2}^{2}+\frac{3}{2} v_{2}^{2}+v_{2}^{2}=\frac{9}{2} v_{2}^{2} \Rightarrow v_{2}=\sqrt{\frac{2 g h}{9}}=\sqrt{\frac{2 g}{9} \frac{\ell}{2}}=\frac{1}{3} \sqrt{g \ell}$
Q3. A particle moving in a central force field centered at $r=0$, follows a trajectory given by $r=e^{-\alpha \theta}$ where, (r, θ) is the polar coordinate of the particle and $\alpha>0$ is a constant. The magnitude of the force is proportional to
(a) r^{-3}
(b) r^{2}
(c) r^{-1}
(d) r^{3}

Ans. 3: (a)
Solution: $r=e^{-\alpha \theta} \Rightarrow u=e^{\alpha \theta} \quad\left(\because u=\frac{1}{r}\right) \quad \Rightarrow \frac{d^{2} u}{d \theta^{2}}=\alpha^{2} e^{\alpha \theta}$
Differential equation of the orbit; $\frac{d^{2} u}{d \theta^{2}}+u=-\frac{m}{\ell^{2} u^{2}} f\left(\frac{1}{u}\right)$
$\alpha^{2} e^{\alpha \theta}+e^{\alpha \theta}=-\frac{m}{\ell^{2} e^{2 \theta}} f\left(\frac{1}{u}\right) \Rightarrow f\left(\frac{1}{u}\right)=-\frac{\ell^{2}}{m}\left(1+\alpha^{2}\right) e^{3 \theta} \Rightarrow f(r)=-\frac{\ell^{2}}{m r^{3}}\left(1+\alpha^{2}\right)$
Q6. The Lagrangian of a particle of unit mass is given by $L=\frac{1}{2}\left(\dot{x}^{2}-x^{2}+2 x \dot{x}\right)$. The Hamiltonian of this system is given by
(a) $\frac{1}{2} p^{2}-p x+x^{2}$
(b) $\frac{1}{2}\left(p^{2}+x^{2}\right)$
(c) $\frac{1}{2}(p-x)^{2}$
(d) $\frac{1}{2} p^{2}+p x-x^{2}$

Ans. 6: (a)
Solution:
$L=\frac{1}{2}\left(\dot{x}^{2}-x^{2}+2 x \dot{x}\right) ; \quad p=\frac{\partial L}{\partial \dot{x}}=\dot{x}+x \quad \Rightarrow \dot{x}=p-x$
$H=p \dot{x}-L=p \dot{x}-\frac{1}{2} \dot{x}^{2}+\frac{1}{2} x^{2}-x \dot{x}=p(p-x)-\frac{1}{2}(p-x)^{2}+\frac{1}{2} x^{2}-x(p-x)$
$\Rightarrow H=p^{2}-p x-\frac{1}{2} p^{2}-\frac{1}{2} x^{2}+p x+\frac{1}{2} x^{2}-p x+x^{2} \quad \Rightarrow H=\frac{1}{2} p^{2}-p x+x^{2}$
Q12. If three real variables x, y and z evolve with time t following

$$
\frac{d x}{d t}=x(y-z), \frac{d y}{d t}=y(z-x), \frac{d z}{d t}=z(x-y),
$$

then which of the following quantities remains invariant in time ?
(a) $x y+y z+z x$
(b) $x^{2}+y^{2}+z^{2}$
(c) $\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}$
(d) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$

Ans. 12: (c)
Solution:

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}\right) & =\frac{x d y / d t+y d x / d t}{x^{2} y^{2}}+\frac{y \dot{z}+z \dot{y}}{y^{2} z^{2}}+\frac{z \dot{x}+x \dot{z}}{x^{2} z^{2}} \\
& =\frac{x z^{2} \dot{y}+y z^{2} \dot{x}+y x^{2} \dot{z}+z x^{2} \dot{y}+z y^{2} \dot{x}+x y^{2} \dot{z}}{x^{2} y^{2} z^{2}} \\
& =\frac{y z(z+y) \dot{x}+z x(z+x) \dot{y}+x y(x+y) \dot{z}}{x^{2} y^{2} z^{2}}
\end{aligned}
$$

$\dot{x}=x(y-z), \dot{y}=y(z-x), \dot{z}=z(x-y)$
$\frac{d}{d t}\left(\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}\right)=\frac{x y z\left(y^{2}-z^{2}\right)+x y z\left(z^{2}-x^{2}\right)+x y z\left(x^{2}-y^{2}\right)}{x^{2} y^{2} z^{2}}=0$
So, $\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}=$ constant
Q13. A circularly polarized laser of power P is incident on a particle of mass m. The particle, which was initially at rest, completely absorbs the incident radiation. The kinetic energy of the particle as a function of time t is given by
(a) $\frac{1}{2} P t\left(\frac{P t}{m c^{2}}+1\right)$
(b) $\frac{1}{2} P t\left(\frac{P t}{m c^{2}}-1\right)$
(c) $\frac{P^{2} t^{2}}{2 m c^{2}}$
(d) $\frac{P t}{2}$

Ans. 13: (a)

Solution:

In case of circulary polarized light, the energy absorbed by the particle and its kinetic energy has following relation:
$E=\sqrt{m c^{2}(2 T-E)}$
$p t=\sqrt{m c^{2}(2 T-p t)} \Rightarrow \frac{p^{2} t^{2}}{m c^{2}}=2 T-p t \Rightarrow 2 T=p t\left(\frac{p t}{m c^{2}}+1\right)$
$\Rightarrow T=\frac{1}{2} p t\left(\frac{p t}{m c^{2}}+1\right)$

Part-C: 2-Mark Numerical Questions

Q1. Two uniform rods of length 1 m are connected to a friction-less hinge A. The hinge is held at a height and the other ends of the rods rests on a friction-less plane, such that the angle between the
 rods is $2 \pi / 3$. If the hinge is released from the rest, what is the speed of the hinge when it hits the floor? [Acceleration due to gravity is $9.81 \mathrm{~ms}^{-2}$]

Ans.: 1.92
Solution:

In this process, the centre of mass will fall in the downward direction by a distance $\frac{L}{2} \sin 30^{\circ}$.
$E_{i}=(2 M) g\left(\frac{L}{2} \sin 30^{\circ}\right)=\frac{1}{2} M g L$
when C will hit the ground, the system will have translational as well as rotational kinetic energy
$E_{f}=\frac{1}{2}(2 M) v^{2}+\frac{1}{2} I_{A} \omega^{2}+\frac{1}{2} I_{B} \omega^{2}=m v^{2}+2 \cdot \frac{1}{2} \cdot \frac{M L^{2}}{3} \cdot \frac{v^{2}}{L^{2}}=\frac{4}{3} M v^{2}$
$\because E_{f}=E_{i} \quad \Rightarrow \frac{4}{3} M v^{2}=\frac{1}{2} M g L \Rightarrow v=\sqrt{\frac{3 g L}{8}}=\sqrt{\frac{3 \times 9.8 \times 1}{8}}=1.92$

Physics by fiziks
 Learn Physics in Right Way

Part-A: 1-Mark Questions

Q9. A conducting sphere of radius R is placed in a uniform electric field E_{0} directed along $+z$ axis. The electric potential for outside points is given by $V_{\text {out }}=-E_{0}\left(1-(R / r)^{3}\right) r \cos \theta$, where r is the distance from the center and θ is the polar angle. The charge density on the surface of the sphere is
(a) $3 \in_{0} E_{0} \cos \theta$
(b) $\epsilon_{0} E_{0} \cos \theta$
(c) $-3 \epsilon_{0} E_{0} \cos \theta$
(d) $\frac{1}{3} \epsilon_{0} E_{0} \cos \theta$

Ans. 9: (a)
Solution. :
We know perpendicular component of electric field is discontinuous across a surface carrying free charge
$E_{\text {out }}^{\perp}-E_{\text {in }}^{\perp}=\frac{\sigma}{\varepsilon_{0}}$ at $r=R$
Inside conducting sphere $E_{\text {in }}^{\perp}=0$
$E_{\text {out }}^{\perp}=-\frac{\partial V_{\text {out }}}{\partial r}$
$\left.E_{\text {out }}^{\perp}\right|_{r=R}=-\frac{\partial}{\partial r}\left|-E_{0} r \cos \theta+E_{0} \frac{R^{3}}{r^{2}} \cos \theta\right|_{r=R}=-\left[E_{0} \cos \theta-2 E_{0} \frac{R^{3}}{r^{3}} \cos \theta\right]_{r=R}$
$=-\left[-E_{0} \cos \theta-2 E_{0} \frac{R^{\zeta}}{R^{\zeta}} \cos \theta\right]=3 E_{0} \cos \theta \rightarrow$ Put in (1) we get
$\frac{\sigma}{\varepsilon_{0}}=3 E_{0} \cos \theta \Rightarrow \sigma=3 \varepsilon_{0} E_{0} \cos \theta$
Thus, (a) is correct.
Q10. A point charge q is kept d distance above an infinite conducting plane. What is the energy stored in the configuration?
(a) $-\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{2 d}$
(b) $-\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{4 d}$
(c) $\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{2 d}$
(d) $\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{4 d}$

Ans. 10: (b)

Solution.:

Potential energy of interaction between $=\frac{1}{2}$ a charge (separated by distance $2 d$)
Potential energy of interaction between two equal and opposite charges separated by $2 d$

$$
=\frac{1}{2}\left[\frac{-q \times q}{4 \pi \varepsilon_{0} \cdot 2 d}\right]=\frac{-q^{2}}{4 \pi \varepsilon_{0} \cdot 4 d} . \text { Thus (b) is correct. }
$$

Q11. Two point charges $2 q$ and q are placed inside two spherical cavities of equal radii $R / 4$ in a solid conducting sphere of radius R, as shown in the figure. The cavities are placed along a diagonal at distances $R / 2$ from the center of the solid sphere. The electrical potential at a point $P, 3 R / 2$ distance away from the center along the same diagonal, is given by

(a) 0
(b) $\frac{1}{4 \pi \epsilon_{0}} \frac{5 q}{2 R}$
(c) $\frac{1}{4 \pi \epsilon_{0}} \frac{2 q}{R}$
(d) $\frac{1}{4 \pi \in_{0}} \frac{3 q}{R}$

Ans. 11: (c)

Solution.:

The $2 q$ charge will induce $-2 q$ charge at the surface of the cavity which will induce $2 q$ at the surface of sphere.

Similarly, ' q ' in second cavity will induce ' q ' at the surface of the sphere.
Total charge on surface of sphere $=3 q$.
In spherical symmetry on the distance of point under observation from the centre of charge distribution matters.
Thus, $V_{C P}=\frac{3 R}{2}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{\not \supset q}{\nexists R / 2}=\frac{2 q}{4 \pi \varepsilon_{0} R}$
Hence (c) is correct option.

Part-B: 3-Mark Questions

Q8. A point charge q is fixed at point A inside a hollow grounded conducting spherical shell of radius R, at a distance a from the center C. The force on the sphere due to the presence of the point charge is
(a) $\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2} a R}{(R+a)^{2}(R-a)^{2}}$ in magnitude and along $\overrightarrow{A C}$.
(b) $\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2} a R}{(R+a)^{2}(R-a)^{2}}$ in magnitude and along $\overrightarrow{C A}$.
(c) $\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{(R-a)^{2}}$ in magnitude and along $\overrightarrow{A C}$.
(d) $\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{(R-a)^{2}}$ in magnitude and along $\overrightarrow{C A}$.

Ans. 8: (a)

Solution.:

Source charge is at ' a ' of magnitude ' Q '
Let unit vector along the line joining centre and location of ' Q ' is \hat{n}_{1}
$\Rightarrow \overrightarrow{O P^{\prime}}=a \hat{n}_{1}$
In the corresponding image problem, image charge will be along same direction at $P "(\vec{y})$.
$\overrightarrow{O P}{ }^{\prime \prime}=\vec{y}_{I}=y_{I} \hat{n}_{1}$

Net potential at \vec{x} is
$\Phi(\vec{x})=\frac{Q}{4 \pi \varepsilon_{0}\left|x \hat{n}-a \hat{n}_{1}\right|}+\frac{q^{\prime}}{4 \pi \varepsilon_{0}\left|x \hat{n}-y_{I} \hat{n}_{1}\right|}$
Now our boundary condition (original) is that $\Phi(x=R)=0$, as sphere was grounded.
$\Phi(\vec{R})=\frac{Q}{4 \pi \varepsilon_{0}\left|R \hat{n}-a \hat{n}_{1}\right|}+\frac{q^{\prime}}{4 \pi \varepsilon_{0}\left|R \hat{n}-y_{I} \hat{n}_{1}\right|}=0$
$\Rightarrow \Phi(\vec{R})=\frac{Q}{4 \pi \varepsilon_{0} R\left|\hat{n}-\frac{a}{R} \hat{n}_{1}\right|}+\frac{q^{\prime}}{4 \pi \varepsilon_{0} y_{I}\left|\frac{R}{y_{I}} \hat{n}-\hat{n}_{1}\right|}=0$
Equality will be satisfied, if
$\frac{Q}{4 \pi \varepsilon_{0} R}=-\frac{q^{\prime}}{4 \pi \varepsilon_{0} y_{I}} \Rightarrow q^{\prime}=\frac{-Q}{R} y_{I} \quad$ and $\frac{a}{R}=\frac{R}{y_{I}} \Rightarrow y_{I}=\frac{R^{2}}{a}$
Force of attraction between 'Q' and grounded sphere = Force between 'Q' and its image

$$
\begin{aligned}
\vec{F}_{Q q^{\prime}} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q^{\prime}}{\left|y_{I}-a\right|^{2}} \hat{n}_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q \times\left(-\frac{Q}{\not R} \cdot \frac{R^{2}}{a}\right)}{\left|\frac{R^{2}}{a}-a\right|^{2}} \hat{n}_{1}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{\left|R^{2}-a^{2}\right|^{2}} \cdot R \frac{Q^{\prime}}{\not a} \hat{n}_{1} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2} R a}{(R-a)^{2}(R+a)^{2}}\left(-\hat{n}_{1}\right) .
\end{aligned}
$$

Hence (a) is correct

Q9. A rectangular dielectric slab partly fills two identical rectangular parallel plate capacitors which are maintained at potentials V_{1} and V_{2} with $V_{1}>V_{2}$. The slab can freely move in the space between the capacitor plates without any friction. Which of the following is true?

(a) The slab will not move.
(b) The slab will move towards lower potential.
(c) The slab will move towards higher potential.
(d) The slab will position itself at $1 / V_{1}: 1 / V_{2}$ ratio between capacitors 1 and 2.

Ans. 9: (c)

Solution 5:

Force on dielectric $=\frac{1}{2} V^{2} \frac{d C}{d x}$. Thus $F \propto V^{2}, \frac{d c}{d x}$ has a small effect.
As $V_{1}>V_{2}$
\Rightarrow Force towards higher potential will be more. This, slab will move towards higher potential.

Part-C: 2-Mark Numerical Questions

No Question

Part-A: 1-Mark Questions

Q17. The wave function of the electron in a Hydrogen atom in a particular state is given by $\pi^{-1 / 2} a_{0}^{-3 / 2} \exp \left(-r / a_{0}\right)$. Which of the following figures qualitatively depicts the probability $(P(r))$ of the electron to be within a distance r from the nucleus?
(a)

(c)

(b)

(d)

Ans. 17: (a)
17. Ans. (d)

Solution:

$P(r)=r^{2}|\psi(r)|^{2}=\frac{1}{\pi a^{3}} r^{2} e^{-2 r / a_{0}}$ and $\frac{d P(r)}{d r}=0 \Rightarrow 2 r e^{-2 r / a_{0}}-\frac{2}{a_{0}} r^{2} e^{-2 r / a_{0}}=0 \Rightarrow r=a_{0}$
Q22. A beam of high energy neutrons is scattered from a metal lattice, where the spacing between nuclei is around 0.4 nm . In order to see quantum diffraction effects, the kinetic energy of the neutrons must be of the order [Mass of neutron $=1.67 \times 10^{-27} \mathrm{~kg}$, Planck's constant $=6.62 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1}$]
(a) eV
(b) MeV
(c) meV
(d) keV

Ans. 22: (c)

Solution:

$2 d \sin \theta=\lambda \Rightarrow \lambda=2 d$
Since $d=0.4 \mathrm{~nm} \Rightarrow \lambda=1.6 \mathrm{~nm}$ where $\lambda=\frac{0.28}{\sqrt{E(e V)}} \AA$
$\Rightarrow E(e V)=\frac{(0.2 r)^{2}}{[\lambda(\AA)]^{2}}=\frac{0.0784}{(16)^{2}}=\frac{0.0784}{256} \Rightarrow E=3 \times 10^{-4} \mathrm{eV}=30 \mathrm{meV} \Rightarrow E \approx \mathrm{meV}$

Q23. Consider eight electrons confined in a $1 D$ box of length d. What is the minimum total energy for the system allowed by Pauli's exclusion principle?
(a) $\frac{15 h^{2}}{4 m d^{2}}$
(b) $\frac{15 h^{2}}{2 m d^{2}}$
(c) $\frac{30 h^{2}}{m d^{2}}$
(d) $\frac{15 h^{2}}{8 m d^{2}}$

Ans. 23: (b)
23. Ans.(c)

Solution:

$$
\begin{aligned}
E_{1}= & \frac{\pi^{2} \hbar^{2}}{2 m d^{2}} & & \\
\therefore E & =2 E_{1}+2 E_{2}+2 E_{3}+2 E_{4} & &
\end{aligned}
$$

Q24. Consider 5 identical spin $\frac{1}{2}$ particles moving in a 3 -dimensional harmonic oscillator potential,

$$
V(r)=\frac{1}{2} m \omega^{2} r^{2}=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

The degeneracy of the ground state of the system is
(a) 5
(b) 7
(c) 20
(d) 32

Ans. 24: (c)

Solution:

Two spin- $\frac{1}{2}$ particles are in the ground state, $n=0$.
Three particles are arranged in $n=1$ (degeneracy $=6$ including spin).

Ground state energy $E=2 \times \frac{3}{2} \hbar \omega+3 \times \frac{5}{2} \hbar \omega=\frac{21}{2} \hbar \omega$
Total possible combinations of arranging 3 spin- $\frac{1}{2}$ particles in $n=1$ state are

$$
{ }^{6} C_{3}=\frac{6!}{3!3!}=20
$$

Q25. A particle is confined in an infinite potential well of the form given below.

$$
V(x)=\left\{\begin{array}{cc}
4 V_{0} x(1-x), & \forall 0 \leq x \leq 1 \\
\infty & \text { otherwise }
\end{array}\right.
$$

If the particle has energy $E \geq V_{0}$, which of the following could be the form of its wave function?
(a)

(c)

(b)

(d)

Ans. 25: (a)

Solution:

$V(x)= \begin{cases}4 V_{0} x(1-x): & 0 \leq x \leq 1 \\ \infty: & \text { otherwise }\end{cases}$
Wavelength $\lambda=\frac{\hbar}{p}$ where
$p=\sqrt{2 m\left(E-V_{0}\right)}$
Thus λ will increase as p decreases
 from $x=0$ to $x=1 / 2$ and then λ
decreases as p increases from $x=\frac{1}{2}$ to $x=1$.
Therefore correct option is (a).

Part-B: 3-Mark Questions

Q4. For a one dimensional simple harmonic oscillator, for which $|0\rangle$ denotes the ground state, what is the constant β in

$$
\langle 0| e^{i k x}|0\rangle=e^{-\beta\left\langle 0 x^{2} \mid 0\right\rangle} ?
$$

(a) $\beta=2 k^{2}$
(b) $\beta=k^{2}$
(c) $\beta=k^{2} / 4$
(d) $\beta=k^{2} / 2$

Ans. 4: (d)
4. Ans.(a)

Solution:

$$
\begin{aligned}
& \langle 0| e^{i k x}|0\rangle=e^{-\beta\left\langle 0 x^{2} \mid 0\right\rangle} \\
& \Rightarrow\langle 0|\left\{1+i k x+\frac{(i k x)^{2}}{2!}+\ldots .\right\}|0\rangle=1-\beta\langle 0| x^{2}|0\rangle+\ldots \\
& \Rightarrow\langle 0| 1|0\rangle+i k\langle 0| \hat{x}|0\rangle-\frac{k^{2}}{2}\langle 0| x^{2}|0\rangle+\ldots=1-\beta\langle 0| x^{2}|0\rangle \\
& \Rightarrow 1+0-\frac{k^{2}}{2}\langle 0| x^{2}|0\rangle=1-\beta\langle 0| x^{2}|0\rangle \Rightarrow \frac{k^{2}}{2}=\beta
\end{aligned}
$$

Q5. A particle of mass m moves in one dimension. The exact eigenfunctions for the ground state of the system is

$$
\psi(x)=\frac{A}{\cosh (\lambda x)}
$$

where, λ is a constant and A is the normalization constant. If the potential $V(x)$ vanishes at infinity, the ground state energy of the system is
(a) $-\frac{\hbar^{2} \lambda}{2 m}$
(b) $\frac{\hbar^{2} \lambda^{2}}{2 m}$
(c) $\frac{\hbar^{2} \lambda}{2 m}$
(d) $-\frac{\hbar^{2} \lambda^{2}}{2 m}$

Ans. 5: (d)
Solution:
$\psi(x)=\frac{A}{\cosh (\lambda x)}=A \operatorname{sech}(\lambda x)$
Time independent Schrodinger equation; $-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V \psi(x)=E \psi(x)$
$-\frac{\hbar^{2}}{2 m} \frac{d}{d x} \frac{d}{d x}(\operatorname{sech}(\lambda x))+V \sec h(\lambda x)=E \operatorname{sech}(\lambda x)$

Now $\frac{d}{d x}(\sec (\lambda x))=\lambda \tanh (\lambda x) \sec h(\lambda x)$ and $\frac{d}{d x}[\lambda \tanh (\lambda x) \sec (\lambda x)]=\lambda \frac{d}{d x}(\tanh (\lambda x)) \sec (\lambda x)+\tanh (\lambda x) \frac{d}{d x}(\sec h(\lambda x))$

$$
\begin{aligned}
& =\lambda^{2} \sec h^{2}(\lambda x) \sec (\lambda x)+\lambda \tanh (\lambda x)(\lambda \tanh (\lambda x) \sec (\lambda x)) \\
& =\lambda^{2} \sec (\lambda x)\left[\sec h^{2}(\lambda x)+\tanh ^{2}(\lambda x)\right]=\lambda^{2} \operatorname{sech}(\lambda x)
\end{aligned}
$$

\therefore From (1), $-\frac{\hbar^{2}}{2 m}\left[\lambda^{2} \sec h(\lambda x)\right]+V \sec h(\lambda x)=E \operatorname{sech}(\lambda x) \Rightarrow-\frac{\hbar^{2} \lambda^{2}}{2 m}+V=E$
Now at $x \rightarrow \infty, V=0 ; \quad \therefore E=-\frac{\hbar^{2} \lambda^{2}}{2 m}$
Thus correct option is (d).

Part-C: 2-Mark Numerical Questions
No Question

Part-A: 1-Mark Questions

Q5. A system with two energy levels is in thermal equilibrium with a heat reservoir at temperature 600 K . The energy gap between the levels is 0.1 eV . Let p be the probability that the system is in the higher energy level. Which of the following statement is correct? [Note: $1 \mathrm{eV} \simeq 11600 \mathrm{~K}$]
(a) $0<p \leq 0.1$
(b) $0.1<p \leq 0.2$
(c) $0.2<p \leq 0.3$
(d) $p \geq 0.3$

Ans. 5: (b)
Solution: $T=600 K$, Note that $K_{B}=8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

$$
\begin{aligned}
P= & \frac{e^{-\beta \varepsilon}}{1+e^{-\beta \varepsilon}}=\frac{1}{1+e^{\beta \varepsilon}}=\frac{1}{1+e^{\frac{0.1 \mathrm{eV}}{\text { Q.17x>0 } \sigma^{5 e V}} \times 600}} \\
& =\frac{1}{1+e^{\frac{0.1}{0.0517}}}=\frac{1}{1+6.917} \approx 0.126 \approx 0.13
\end{aligned}
$$

Q6. If mean and standard deviation of the energy distribution of an equilibrium system vary with temperature T as T^{v} and T^{α} respectively, then v and α must satisfy
(a) $2 v=1+\alpha$
(b) $2 v+1=\alpha$
(c) $v=1+2 \alpha$
(d) $v+1=2 \alpha$

Ans. 6: (d)
Solution: Consider a system of classical ideal gas with N molecules
Mean energy $U=N\langle E\rangle=\frac{3}{2} N k_{B} T \propto T^{1}, \quad \therefore v=1$
For this system, standard deviation in energy i.e. $\sigma_{E}=\sqrt{(\Delta E)^{2}}=\sqrt{k T^{2} C_{V}} \propto T^{1}, \therefore \alpha=1$ $\because v+1=2 \alpha \quad \Rightarrow 1+1=2 \times 1$

Q7. Adding 1 eV of energy to a large system did not change its temperature $\left(27^{\circ} \mathrm{C}\right)$ whereas it changed the number of micro-states by a factor r.
r is of the order [Note: $1 \mathrm{eV} \simeq 11600 \mathrm{~K}$]
(a) 10^{4}
(b) 10^{23}
(c) 10^{17}
(d) 10^{-19}

Ans. 7: (c)

Solution: $\quad \because \beta=\left(\frac{\partial \ln \Omega}{\partial E}\right), \quad \Omega$ being the number of microstates in the system.
This allows us to write, $\Delta \ln \Omega=\beta \Delta E=\frac{\Delta E}{k_{B} T}$
\therefore by changing energy by $\Delta E, \Omega$ will change by a factor of $e^{\frac{\Delta E}{k T}}=e^{\frac{1 \mathrm{eV}}{25 \mathrm{~V} \mathrm{~V}}} \approx 2.3 \times 10^{17}$

Q8. The ratio of specific heat of electrons in a heated copper wire at two temperatures $200^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ is
(a) 1.27
(b) 2
(c) 1.41
(d) 1.61

Ans. 8: (a)

Solution:

Total heat capacity

$\therefore C_{V \text { Velectronic }} \propto T \quad$ i.e. $C_{V e 1}=a T_{1}$ and $C_{V e_{2}}=a T_{2}$
$\therefore \frac{C_{V e 1}}{C_{\text {Ve } 2}}=\frac{T_{1}}{T_{2}}=\frac{473}{373}=1.27$
Q21. An ideal diatomic gas at pressure P is adiabatically compressed so that its volume becomes $\frac{1}{n}$ times the initial value. The final pressure of the gas will be
(a) $n^{\frac{7}{5}} P$
(b) $n^{\frac{7}{2}} P$
(c) $n^{-\frac{7}{5}} P$
(d) $n^{\frac{5}{3}} P$

Ans. 21: (a)

Solution:

$V_{1}=V ; V_{2}=\frac{V}{n}$, for a diatomic gas $C_{V}=\frac{5}{2} R, C_{P}=\frac{7}{2} R \quad \therefore r=\frac{C_{P}}{C_{V}}=\frac{7}{5}$
Now for an adiabatic compression $P_{1} V_{1}^{r}=P_{2} V_{2}^{r} \Rightarrow P_{2}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma} P_{1}=\left(\frac{V}{V / n}\right)^{\frac{7}{5}} P=n^{\frac{7}{5}} P$

Part-B: 3-Mark Questions

Q7. The energy of two Ising spins $\left(s_{1}= \pm 1, s_{2}= \pm 1\right)$ is given by $E=-s_{1} s_{2}-\frac{1}{2}\left(s_{1}+s_{2}\right)$. At certain temperature T probability that both spins take +1 values is 4 times than they both take -1 values. What is the probability that they have opposite spins? $\left[\beta=1 / k_{B} T\right]$
(a) $\frac{e^{\beta}}{1+e^{2 \beta}}$
(b) $e^{\beta} \tanh \beta$
(c) $\frac{1}{6}$
(d) $\frac{1}{2}$

Ans. 7: (c)

Solution:

Given $E=-s_{1} s_{2}-\frac{1}{2}\left(s_{1}+s_{2}\right)$
$P(+1,+1)=\frac{e^{2 \beta}}{1+e^{2 \beta}+2 e^{-\beta}}$
$P(-1,-1)=\frac{e^{0}}{1+e^{2 \beta}+2 e^{-\beta}}=\frac{1}{1+e^{2 \beta}+2 e^{-\beta}}$

s_{1}	$\cdots s_{2}^{(1)}$	E
+1	+1	-2
+1	-1	+1
-1	+1	+1
-1	-1	0

Given that $P(+1,+1)=4 P(-1,-1)$ i.e.
$\frac{e^{2 \beta}}{1+e^{2 \beta}+2 e^{-\beta}}=\frac{4}{1+e^{2 \beta}+2 e^{-\beta}} \quad \Rightarrow e^{2 \beta}=4 \Rightarrow e^{\beta}=2$
$\therefore P(+1,-1)=\frac{2 e^{-\beta}}{1+e^{2 \beta}+2 e^{-\beta}}=\frac{2 \times \frac{1}{2}}{1+2^{2}+2 \times \frac{1}{2}}=\frac{1}{6}$
Q15. A container has two compartments. One compartment contains Oxygen gas at pressure P_{1}, volume V_{1} and temperature T_{1}. The second compartment contains Nitrogen gas at pressure P_{2}, volume V_{2}, and temperature T_{2}. The partition separating two compartments is removed and the gases are allowed to mix. What is the temperature of the mixture when it comes to equilibrium?
(a) $\frac{\left(P_{1} V_{1}+P_{2} V_{2}\right) T_{1} T_{2}}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}$
(b) $\frac{\left(V_{1} T_{1}+V_{2} T_{2}\right)}{V_{1}+V_{2}}$
(c) $\frac{\left(P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}\right)}{P_{1} V_{1}+P_{2} V_{2}}$
(d) $\frac{\left(P_{1} V_{1} T_{1}+P_{2} V_{2} T_{1}\right)}{P_{1} V_{1}+P_{2} V_{2}}$

Ans. 15: (a)

Solution:

\because Gases are identical (diatomic)

$$
C_{V 1}=C_{V 2}=\frac{5}{2} R \text { per mole }
$$

$\begin{gathered}n_{1}, T_{1}, C_{V} \\ O_{2}\end{gathered}+\begin{gathered}n_{2}, T_{2}, C_{V} \\ N_{2}\end{gathered} \Rightarrow \begin{gathered}\left(n_{1}+n_{2}\right), T\left(T_{1}, T_{2}\right) \\ C_{V}\end{gathered}$
$U_{1}=n_{1} C_{V} T_{1} ; \quad U_{2}=n_{2} C_{V} T_{2} ; \quad U_{T}=\left(n_{1}+n_{2}\right) C_{V} T$
$\therefore U_{T}=U_{1}+U_{2} \Rightarrow\left(n_{1}+n_{2}\right) C_{V} T=n_{1} C_{V} T_{1}+n_{2} C_{V} T_{2}$
$\Rightarrow T=\frac{n_{1} T_{1}+n_{2} T_{2}}{n_{1}+n_{2}}, \quad \because n_{1}=\frac{P_{1} V_{1}}{R T_{1}}, n_{2}=\frac{P_{2} V_{2}}{R T_{2}}$
$\Rightarrow T=\frac{\frac{P_{1} V_{1}}{R T_{1}} \times T_{1}+\frac{P_{2} V_{2}}{R T_{2}} T_{2}}{\frac{P_{1} V_{1}}{R T_{1}}+\frac{P_{2} V_{2}}{R T_{2}}}=\frac{P_{1} V_{1}+P_{2} V_{2}}{\frac{P_{1} V_{1}}{T_{1}}+\frac{P_{2} V_{2}}{T_{2}}}=\frac{\left(P_{1} V_{1}+P_{2} V_{2}\right) T_{1} T_{2}}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}$
Part-C: 2-Mark Numerical Questions
Q4. A particle can access only three energy levels $E_{1}=1 \mathrm{eV}, E_{2}=2 \mathrm{eV}$, and $E_{3}=6 \mathrm{eV}$. The average energy $\langle E\rangle$ of the particle changes as temperature T changes. What is the ratio of the minimum to the maximum average energy of the particle?
Ans.: 0.333

Solution:

$\theta=e^{-\beta}+e^{-2 \beta}+e^{-6 \beta}$

$\langle E\rangle=-\frac{\partial \ln \theta}{\partial \beta}$

$\langle E\rangle=\frac{1 e^{-\beta}+2 e^{-2 \beta}+6 e^{-6 \beta}}{e^{-\beta}+e^{-2 \beta}+e^{-6 \beta}}$ \qquad
Now minimum $\langle E\rangle_{\text {min }}$ is obtained when particle is in level E_{1}
$\langle E\rangle_{\min }=\frac{E_{1} e^{-\beta}}{\theta}=\frac{e^{-\beta}}{\theta} ; \quad\langle E\rangle_{\max }=\frac{E_{3} e^{-6 \beta}}{\theta}=\frac{6 e^{-6 \beta}}{\theta}$
$\frac{\left\langle E_{\min }\right\rangle}{\left\langle E_{\max }\right\rangle}=\frac{e^{-\beta}}{\theta} \times \frac{\theta}{6 e^{-6 \beta}}=\frac{1}{6 e^{-5 \beta}}$
It seems more information is needed to evaluate the ratio.

Q5. A system of N classical non-identical particles moving in one dimensional space is governed by the Hamiltonian

$$
H=\sum_{i=1}^{N}\left(A_{i} p_{i}^{2}+B_{i}\left|q_{i}\right|^{\alpha}\right)
$$

where p_{i} and q_{i} are momentum and position of the i-th particle, respectively, and the constant parameters A_{i} and B_{i} characterize the individual particles. When the system is in equilibrium at temperature T, then the internal energy is found to be

$$
E=\langle H\rangle=\frac{2}{3} N k_{B} T,
$$

where k_{B} is the Boltzmann constant. What is the value of α ?
Ans.: 6

Solution:

Average energy for N particles is $\langle E\rangle=N\left[\frac{1}{2} k_{B} T+\frac{k_{B} T}{\alpha}\right]=\frac{2}{3} N k_{B} T \quad \Rightarrow \frac{1}{2}+\frac{1}{\alpha}=\frac{2}{3}$
$\Rightarrow \frac{\alpha+2}{2 \alpha}=\frac{2}{3} \Rightarrow 3(\alpha+2)=4 \alpha \quad \Rightarrow \alpha=6$
Q10. One mole of an ideal gas undergoes a thermodynamic cycle formed by an isobaric process, an isochoric process, and an adiabatic process (see figure). At A, the temperature of the gas is T. What is the change in the internal energy of the gas, in the units of $R T$ (R is the universal gas constant) as the system goes from A to B

Ans.: 17.5

Solution:

$n=1, P V=R T$
$\Delta U_{A B}=$?
$\Delta U_{\text {Total }}=\Delta U_{A B}+\Delta U_{B C}+\Delta U_{C A}=0$
$\Rightarrow \Delta U_{A B}=-\left[\Delta U_{B C}+\Delta U_{C A}\right]$
$B \rightarrow C$ Isochoric process $\Rightarrow d V=0$

$\therefore \Delta U_{B C}=\Delta Q_{B C}-d W=\Delta Q_{B C}-0=\Delta Q_{B C}=C_{V}\left[T_{C}-T_{B}\right]$
Process $C \rightarrow A$ is adiabatic, i.e. $\Delta Q_{C A}=0 ; \quad \Delta U_{C A}=\Delta Q_{C A}-\Delta W_{C A}=-\Delta W_{C A}$
$\Delta W_{C A}=\frac{R}{\gamma-1}\left[T_{C}-T_{A}\right]=\frac{R}{1-\gamma}\left[T_{A}-T_{C}\right]$
Using $P_{A} V_{A}^{\gamma}=P_{C} V_{C}^{\gamma} \Rightarrow 32 P V^{\gamma}=P(8 V)^{\gamma} \Rightarrow 32 V^{\gamma}=8^{\gamma} V^{\gamma} \Rightarrow \ln 32=\ln 8^{\gamma}$
$\Rightarrow \ln 2^{5}=\gamma \ln 2^{3} \Rightarrow 5 \ln 2=3 \gamma \ln 2 \Rightarrow \gamma=5 / 3 \Rightarrow$ monoatomic gas $\Rightarrow C_{V}=\frac{3}{2} R$
$\Delta W_{C A}=\frac{R}{1-\frac{5}{3}}\left[T_{A}-T_{C}\right]=-\frac{3 R}{2}\left[T_{A}-T_{C}\right]$
$\Rightarrow-\Delta W_{C A}=\frac{3 R}{2}\left[T_{A}-T_{C}\right]=\Delta U_{C A}$ and $\Delta U_{B C}=\frac{3}{2} R\left[T_{C}-T_{B}\right]$
$\therefore \Delta U_{A B}=-\Delta U_{B C}-\Delta U_{C A}=-\frac{3}{2} R T_{C}+\frac{3}{2} R T_{B}-\frac{3 R T_{A}}{2}+\frac{3}{2} R T_{C} \Rightarrow \Delta U_{A B}=\frac{3 R}{2}\left[T_{B}-T_{A}\right]$
Now for process AB (Isobaric) ; $P V=R T$
$\Rightarrow T_{B}=\frac{32 P \times 8 V}{R}$ and $T_{A}=\frac{32 P V}{R}$
$\therefore \Delta U_{A B}=\frac{3 R}{2}\left[32 \times 8 \frac{P V}{R}-\frac{32 P V}{R}\right]=\frac{3}{2} R \times 32 \times \frac{7 P V}{R}=336 P V \quad \Rightarrow \Delta U_{A B}=336 R T$

Part-A: 1-Mark Questions

Q20. The base current in the first transistor of the following circuit having two identical Silicon-based npn transistors of β value 100 , is closest to

(a) $3.6 \mu \mathrm{~A}$
(b) 0.36 mA
(c) 5.0 mA
(d) $5.0 \mu \mathrm{~A}$

Ans. 20: (a)
Solution.:
$I_{B_{1}}=\frac{V_{C C}-V_{B E_{1}}-V_{B E_{2}}}{\beta_{D} R_{E}}$ where $\beta_{D}=\beta_{1} \cdot \beta_{2}=100 \times 100=10^{4}$.
$\Rightarrow I_{B_{1}}=\frac{5-0.7-0.7}{10^{4} \times 100}=3.6 \mu \mathrm{~A}$

Part-B: 3-Mark Questions

Q14. What is the output voltage of the following circuit for the input current $1 n A$?

(a) $1 m V$
(b) $1 V$
(c) $1 \mu V$
(d) $1 n V$

Ans. 14: (b)

Solution.:

$\Rightarrow V_{01}=V_{\text {in } 2}=1 \mathrm{n} A \times 10 \mathrm{M} \Omega=1 \times 10^{-9} \times 10 \times 10^{6}=0.01$ Volts
$\Rightarrow V_{0}=\left(1+\frac{R_{F}}{R_{1}}\right) V_{\text {in } 2}=\left(1+\frac{99}{1}\right) \times 0.01=1$ Volts

Part-C: 2-Mark Numerical Questions

Q3. Optical excitation of intrinsic germanium creates an average density of 10^{12} conduction electrons per cm^{3} in the material at liquid nitrogen temperature. At this temperature, the electron and hole nobilities are equal, $\mu=0.5 \times 10^{4} \mathrm{~m}^{2} V^{-1} \mathrm{~s}^{-1}$. The germanium dielectric constant is 20 . If 100 Volts is applied across 1 cm cube of crystal under these conditions, about how much current, in $m A$, is observed? [Charge of electron $=1.6 \times 10^{-19} \mathrm{C}$]
Ans.: 0.08
Q9. A 12 -bit analog-to-digital converter has an operating range of 0 to $1 V$. The smallest voltage step (in $m V$, upto two significant digits) that one can record using this converter is

Ans.: 0.24
Solution.:
Step size $=\frac{1 V}{2^{12}-1}=\frac{1}{4096-1} V=0.24 \mathrm{mV}$

Part-A: 1-Mark Questions

Q16. Two identical simple pendulum of length L are connected by a spring at a height of $L / 2$ as shown in the figure. Assuming the spring constant is mg / L, where m is the mass of the bob and g is the acceleration due to gravity, what is the ratio of the highest to lowest Eigen frequencies of the system?
(a) 1
(b) $\sqrt{3 / 2}$
(c) $\sqrt{2}$
(d) $\sqrt{3}$

Ans. 16: (b)

Solution:

$T=\frac{1}{2} m L^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m L^{2} \dot{\theta}_{2}^{2} ;$
$T=\left(\begin{array}{cc}m L^{2} & 0 \\ 0 & m L^{2}\end{array}\right)$
$V=m g L\left(1-\cos \theta_{1}\right)+m g L\left(1-\cos \theta_{2}\right)+\frac{1}{2} k\left(\frac{L}{2} \theta_{1}-\frac{L}{2} \theta_{2}\right)^{2}$
$=2 m g L \sin ^{2} \frac{\theta_{1}}{2}+2 m g L \sin ^{2} \frac{\theta_{2}}{2}+\frac{1}{2} k \frac{L^{2}}{4}\left(\theta_{1}^{2}+\theta_{2}^{2}-2 \theta_{1} \theta_{2}\right)$
$=\frac{1}{2}\left(m g L+\frac{1}{4} k L^{2}\right) \theta_{1}^{2}+\frac{1}{2}\left(m g L+\frac{1}{4} k L^{2}\right) \theta_{2}^{2}-\frac{1}{2} \frac{k L^{2}}{4}\left(\theta_{1} \theta_{2}+\theta_{2} \theta_{1}\right)$
$V=\left[\begin{array}{cc}m g L+\frac{1}{4} k L^{2} & -\frac{1}{4} k L^{2} \\ -\frac{1}{4} k L^{2} & m g L+\frac{1}{4} k L^{2}\end{array}\right]$
$\left|V-\omega^{2} T\right|=0$
$\Rightarrow\left|\begin{array}{cc}m g L+\frac{1}{4} k L^{2}-\omega^{2} m L^{2} & -\frac{1}{4} k L^{2} \\ -\frac{1}{4} k L^{2} & m g L+\frac{1}{4} k L^{2}-\omega^{2} m L^{2}\end{array}\right|=0$
$\Rightarrow\left(m g L+\frac{1}{4} k L^{2}-\omega^{2} m L^{2}\right)^{2}-\left(\frac{1}{4} k L^{2}\right)^{2}=0$
$\Rightarrow\left(m g L+2 \cdot \frac{1}{4} k L^{2}-\omega^{2} m L^{2}\right)\left(m g L-\omega^{2} m L^{2}\right)=0$
$\omega_{1}^{2}=\frac{m g L+\frac{2}{4} k L^{2}}{m L^{2}}$ and $\omega_{2}^{2}=\frac{m g L}{m L^{2}}$
$\frac{\omega_{1}^{2}}{\omega_{2}^{2}}=\frac{m g L+2 k \frac{L^{2}}{4}}{m g L}=1+\frac{2 k L}{4 m g}=1+\frac{1}{2}\left(\frac{m g}{L}\right) \frac{L}{m g} \quad \because k=\frac{m g}{L}$
$\frac{\omega_{1}}{\omega_{2}}=\sqrt{\frac{3}{2}}$
Q18. A thin film surrounded by air has an index of refraction of 1.4. A region of the film appears bright blue $(\lambda=400 \mathrm{~nm})$ when white light is incident perpendicular to the surface. What might be the minimum thickness of the film?
(a) 420 nm
(b) 280 nm
(c) 140 nm
(d) 70 nm

Ans. 18: (c)

Solution:

$2 \mu t=\lambda \Rightarrow t=\frac{\lambda}{2 \mu}=\frac{400 \mathrm{~nm}}{2 \times 1.4}=142.84 \mathrm{~nm}$
Q19. The trajectory of a particle which undergoes simple harmonic motion on a plane is shown in the figure. The ratio of the frequencies for the motion along x and y directions is given by
(a) $\frac{4}{5}$
(b) $\frac{2}{3}$
(c) $\frac{3}{2}$
(d) $\frac{3}{5}$

Ans. 19: (d)

Solution:

$$
n_{x}=10, n_{y}=6 ; \quad \frac{\omega_{x}}{\omega_{y}}=\frac{n_{y}}{n_{x}}=\frac{6}{10}=\frac{3}{5}
$$

Part-B: 3-Mark Questions

No Question

Part-C: 2-Mark Numerical Questions

Q2. A pair of crossed ideal linear polarizer's allow no light to pass through. To produce some output one can insert optical elements between the crossed polarizer's. For given light beam of input intensity I_{0} Nirmalya inserts a quarter-wave plate between the crossed polarizer's and records an output intensity αI_{0}. On the other hand, Ayan inserts two linear polarizer's having orientations 30° and 60° w.r.t. the first polarizer of the crossed pair, and records an output intensity of βI_{0}. What is the ratio $\frac{\alpha}{\beta}$?
Ans.: 1.19
Solution: $I_{1}=\left(\left(\frac{I_{0}}{2} \cos ^{2} 30^{\circ}\right) \cos ^{2} 30^{\circ}\right) \cos ^{2} 30^{\circ}=\left(\left(\frac{I_{0}}{2} \cdot \frac{3}{4}\right) \frac{3}{4}\right) \frac{3}{4}=\frac{27 I_{0}}{128}$
$I_{1}=\beta I_{0} \Rightarrow \beta=\frac{27}{128}$
$I_{2}=\frac{I_{0}}{2} \sin ^{2} 2 \theta \sin ^{2} \frac{\delta}{2}=\frac{I_{0}}{2} \cdot \frac{1}{2} \sin ^{2} 2 \theta \quad\left[\because \delta=\frac{\pi}{2}\right]$
For maximum intensity $\sin ^{2} 2 \theta=1 \rightarrow \theta=45^{\circ}$
$I_{2}=\frac{I_{0}}{4}=\alpha I_{0} \Rightarrow \alpha=\frac{1}{4}$
$\frac{\alpha}{\beta}=\frac{1}{4} \cdot \frac{128}{27}=\frac{128}{108}=1.185 \simeq 1.19$
Q8. The frequency dispersion relation of the surface waves of a fluid of density ρ and temperature T, is given by $\omega^{2}=g k+T k^{3} / \rho$, where ω and k are the angular frequency and wavenumber, respectively, g is the acceleration due to gravity. The first term in r.h.s. describes the gravity waves and the second term describes the surface tension wave. What is the ratio of the first term to the second term, when the phase velocity is equal to the group velocity?
Ans.: 1

Solution:

$\omega^{2}=g k+\frac{T k^{3}}{\rho}$
$2 \omega \frac{d \omega}{d k}=g+\frac{3 T k^{2}}{\rho}$
$\omega \cdot \frac{\omega}{k}=g+\frac{T k^{2}}{\rho}$
$2 \cdot \frac{v_{g}}{v_{p}}=\frac{g+3 T k^{2} / \rho}{g+T k^{2} / \rho}$
Given $v_{g}=v_{p} ; \Rightarrow 2 g+2 \frac{T k^{2}}{\rho}=g+3 \frac{T k^{2}}{\rho} \Rightarrow g=\frac{T k^{2}}{\rho} \Rightarrow \frac{g k}{T k^{3} / \rho}=1$

Our Star Achievers

NET / JRF AIR - 01
Classroom Course

JEST AIR - 04
Online Live Batch

JRF AIR - 02
Classroom Course

GATE AIR-03
Pre-Recorded Batch

IIT-JAM AIR - 05
Online Live Batch

JEST AIR - 06
Online Live Batch

