SECTION - A

MULTIPLE CHOICE QUESTIONS (MCQ)

Q1 - Q10 carry one mark each.

Q1. Which one of the following functions has a discontinuity in the second derivative at $x=0$, where x is a real variable?
(a) $f(x)=|x|^{3}$
(b) $f(x)=x|x|$
(c) $f(x)=\cos (|x|)$
(d) $f(x)=|x|^{2}$

Ans. : (b)
Solution: $\frac{d^{2}}{d x^{2}}(x|x|)=\frac{2 x}{|x|}$
Assuming a function to be real.
Plots:

Q2. A collimated beam of laser light of wavelength 514 nm is normally incident on a smooth glass slab placed in air. Given the refractive indices of glass and air are 1.47 and 1.0 , respectively, the percentage of light intensity reflected back is
(a) 0
(b) 4.0
(c) 3.6
(d) 4.2

Ans. : (c)
Solution: $R=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2}=\left(\frac{1-1.47}{1+1.47}\right)=0.036=0.036 \times 100=3.6 \%$
Q3. Two stationary point particles with equal and opposite charges are at some fixed distance from each other. The points having zero electric potential lie on:
(a) A sphere
(b) A plane
(c) A cylinder
(d) Two parallel planes

Ans. : (b)
Solution: All points on the plane are at equal distance from charges, so potential will be zero.

Q4. For a system undergoing a first order phase transition at a temperature T_{c}, which one of the following graphs best describes the variation of entropy (S) as a function of temperature (T) ?
(a)

(b)

(c)

(d)

Ans. : (d)
Solution: $S=-\left(\frac{\partial g}{\partial T}\right)_{P}$ specific entropy. In first order Phase transition first order derivative of specific Gibbs free energy is discontinuous that is specific entropy.
Q5. In a photoelectric effect experiment, a monochromatic light source emitting photon with energy greater than the work function of the metal under test is used. If the power of the light source is doubled, which one of the following statements is correct?
(a) The number of emitted photoelectrons remains the same
(b) The stopping potential remains the same
(c) The number of emitted photoelectrons decreases
(d) The stopping potential doubles

Ans.: (b)
Solution: Stopping potential is not defined at power of light source
Q6. The figure below shows a cubic unit cell with lattice constant a. The shaded crystallographic plane intersects the x-axis at $0.5 a$. The Miller indices of the shaded plane are

(a) (210)
(b) $(\overline{2} 10)$
(c) (110)
(d) (102)

Ans. : (a)
Solution: (i) Intercepts along $x, y, z-$ axis; $\quad x=\frac{a}{2}, y=a, z=\infty$
(ii) Divide by lattice parameters

$$
\frac{a / 2}{a}, \frac{a}{a}, \frac{\infty}{a} \Rightarrow \frac{1}{2}, 1, \infty
$$

(iii) Take reciprocal, 2,1,0
\therefore The Miller indices is (210)
Q7. For a particle moving in a central potential, which one of the following statements is correct?
(a) The motion is restricted to a plane due to the conservation of angular momentum
(b) The motion is restricted to a plane due to the conservation of energy only
(c) The motion is restricted to a plane due to the conservation of linear momentum
(d) The motion is not restricted to a plane

Ans. : (a)
Solution: For central force problem angular momentum \vec{J} is conserved and $\vec{r} . \vec{J}=0$ which ensure that motion of particle is confined in plane
Q8. Consider the motion of a quantum particle of mass m and energy E under the influence of a step potential of height V_{0}. If R denotes the reflection coefficient, which one of the following statements is true?

(a) If $E=\frac{4}{3} V_{0}, R=1$
(b) $E=\frac{4}{3} V_{0}, R=0$
(c) $E=\frac{1}{2} V_{0}, R=1$
(d) $E=\frac{1}{2} V_{0}, R=0.5$

Ans. : (c)
Solution: $E=\frac{V_{0}}{2} \Rightarrow E<V_{0}$, so $R=1$. Therefore, option (c) is correct
Q9. The Boolean function $\overline{P Q}(\bar{P}+Q)(Q+\bar{Q})$ is equivalent to:
(a) P
(b) \bar{P}
(c) $\bar{P} Q$
(d) $P \bar{Q}$

Ans. : (b)

Solution:

$Y=\overline{P Q}(\bar{P}+Q)(Q+\bar{Q}) \Rightarrow Y=(\bar{P}+\bar{Q})(\bar{P}+Q) \cdot 1=\bar{P}+\bar{P} Q+\overline{P Q}$
$\Rightarrow Y=\bar{P}(1+Q)+\bar{P} \bar{Q}=\bar{P}(1+\bar{Q})=\bar{P}$
Q10. Three point charges each carrying a charge q are placed on the vertices of an equilateral triangle of side L. The electrostatic potential energy of the configuration is:
(a) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{L}$
(b) $\frac{2}{4 \pi \varepsilon_{0}} \frac{q^{2}}{L}$
(c) $\frac{3}{4 \pi \varepsilon_{0}} \frac{q^{2}}{L}$
(d) $\frac{1}{\pi \varepsilon_{0}} \frac{q^{2}}{L}$

Ans. 10: (c)
Solution: Work done in placing charges
$W_{1}=0, W_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{L}$ and $W_{3}=q \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{L}+\frac{q}{L}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{L}$
Also Total work done
$=W_{1}+W_{2}+W_{3}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{L}(1+2)=\frac{3}{4 \pi \varepsilon_{0}} \frac{q^{2}}{L}$

Q11- Q30 carry two marks each.
Q11. Which of the following statements is correct?
Given $\binom{n}{m}=\frac{n!}{m!(n-m)!}$ is the binomial coefficient
(a) $\cos n \theta=\cos ^{n} \theta-\binom{n}{2} \cos ^{n-2} \theta \sin ^{2} \theta+\binom{n}{4} \cos ^{n-4} \theta \sin ^{4} \theta-\ldots$
(b) $\sin n \theta=\binom{n}{1} \cos ^{n-1} \theta \sin \theta+\binom{n}{3} \cos ^{n-3} \theta \sin ^{3} \theta+\ldots$
(c) $\cos n \theta=\cos ^{n} \theta+\binom{n}{2} \cos ^{n-2} \theta \sin ^{2} \theta+\binom{n}{4} \cos ^{n-4} \theta \sin ^{4} \theta+\ldots$.
(d) $\sin n \theta=\cos ^{n} \theta-\binom{n}{2} \cos ^{n-2} \theta \sin ^{2} \theta+\binom{n}{4} \cos ^{n-4} \theta \sin ^{4} \theta-\ldots$.

Ans. : (a)
Solution: Let's invoke De Moivre's theorem here. We have

$$
\cos (n \theta)+i \sin (n \theta)=(\cos (\theta)+i \sin (\theta))^{n}
$$

Since n is a positive integer, the binomial theorem holds,

$$
(\cos (\theta)+i \sin (\theta))^{n}
$$

Hence, by expanding, we have

$$
(\cos (\theta)+i \sin (\theta))^{n}=\cos ^{n}(\theta)+n \cos ^{n-1}(\theta) \cdot i \sin (\theta)+\frac{n(n-1)}{1 \cdot 2} \cos ^{n-2}(\theta) \cdot i^{2} \sin ^{2}(\theta)+\ldots
$$

Since $i^{2}=-1, i^{3}=-i, i^{4}=1, i^{5}=i, \ldots$., we have

$$
\begin{aligned}
&(\cos (\theta)+i \sin (\theta))^{n}=\left[\cos ^{n}(\theta)-\frac{n(n-1)}{1 \cdot 2} \cos ^{n-2}(\theta) \cdot \sin ^{2}(\theta)\right. \\
&\left.+\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} \cos ^{n-4}(\theta) \cdot \sin ^{4}(\theta)+\ldots .\right] \\
&+i\left[n \cos ^{n-1}(\theta) \cdot \sin (\theta)-\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3} \cos ^{n-3}(\theta) \cdot \sin ^{3}(\theta)+\ldots .\right]
\end{aligned}
$$

By equating the real and imaginary parts, we obtain

$$
\begin{aligned}
& \cos (n \theta)=\cos ^{n}(\theta)-\frac{n(n-1)}{1 \cdot 2} \cos ^{n-2}(\theta) \cdot \sin ^{2}(\theta) \\
& +\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} \cos ^{n-4}(\theta) \cdot \sin ^{4}(\theta)+\ldots \\
& \text { Also, } \sin (n \theta)=n \cos ^{n-1}(\theta) \cdot \sin (\theta)-\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \cos ^{n-3}(\theta) \cdot \sin ^{3}(\theta)+\ldots . .
\end{aligned}
$$

Q12. The volume integral $\int_{v} e^{-\left(\frac{r}{R}\right)^{2}} \vec{\nabla} \cdot\left(\frac{\hat{r}}{r^{2}}\right) d^{3} r$, where V is the volume of a sphere of radius R centered at the origin, is equal to
(a) 4π
(b) 0
(c) $\frac{4}{3} \pi R^{3}$
(d) 1

Ans. 12: (a)

Solution:

$$
J=\int_{v} e^{-\left(\frac{r}{R}\right)^{2}} \vec{\nabla} \cdot\left(\frac{\hat{r}}{r^{2}}\right) d^{3} r=\int_{v} e^{-\left(\frac{r}{R}\right)^{2}} \times 4 \pi \delta^{3}(r) d^{3} r=4 \pi\left[e^{-\left(\frac{0}{R}\right)^{2}}\right]=4 \pi
$$

Q13. $\lim _{x \rightarrow 0+} x^{x}$ is equal to
(a) 0
(b) ∞
(c) e
(d) 1

Ans. : (d)
Solution: $y=x^{x} \Rightarrow \ln y=x \ln x=\frac{\ln x}{1 / x}$
$\lim _{x \rightarrow 0} \ln y=\frac{1 / x}{-1 / x^{2}}=-x=0, \ln y=0$, So, $y=1$ is the answer.
$\Rightarrow y=e^{0}=1$

Q14. A wheel is rotating at a frequency $f_{0} \mathrm{~Hz}$ about a fixed vertical axis. The wheel stops in t_{0} seconds, with constant angular deceleration. The number of turns covered by the wheel before it comes to rest is given by
(a) $f_{0} t_{0}$
(b) $2 f_{0} t_{0}$
(c) $\frac{f_{0} t_{0}}{2}$
(d) $\frac{f_{0} t_{0}}{\sqrt{2}}$

Ans: (c)
Solution: $\omega_{0}=2 \pi f_{0}, \omega=\omega_{0}-\alpha t$
$\alpha=\frac{\omega_{0}}{t_{0}} \Rightarrow \alpha=\frac{2 \pi f_{0}}{t_{0}}$
$\theta=\omega_{0} t-\frac{1}{2} \alpha t^{2}=\omega_{0} t_{0}-\frac{1}{2} \frac{\omega_{0}}{t_{0}} t_{0}^{2}=\frac{\omega_{0} t_{0}}{2}=\frac{2 \pi f_{0} t_{0}}{2}$
Number of turns $=\frac{\theta}{2 \pi}=\frac{f_{0} t_{0}}{2}$. So the option (c) is correct.
Q15. Two objects of masses m and $2 m$ are moving at speeds of v and $v / 2$, respectively. After undergoing a completely inelastic collision, they move together with a speed of $v / 3$. The angle between the initial velocity of the two objects is
(a) 60°
(b) 120^{0}
(c) 45^{0}
(d) 90°

Ans. : (b)
Solution: As $\Delta p_{x}=0, \Delta p_{y}=0$
For x direction,
$\Rightarrow 2 m \times \frac{v}{2} \frac{\cos \theta}{2}+m v \frac{\cos \theta}{2}=3 m \times \frac{v}{3}$
$\Rightarrow 2 m v \frac{\cos \theta}{2}=m v \Rightarrow \frac{\cos \theta}{2}=\frac{1}{3}=\cos 60^{\circ}$
$\frac{\theta}{2}=60^{\circ} \Rightarrow \theta=120^{\circ}$
Q16. Two planets P_{1} and P_{2} having masses M_{1} and M_{2} revolve around the Sun in elliptical orbits, with time periods T_{1} and T_{2} respectively. The minimum and maximum distances of planet P_{1} from the Sun are R and $3 R$ respectively, whereas for planet P_{2} these are $2 R$ and $4 R$, respectively, where R is a constant. Assuming M_{1} and M_{2} are much smaller than the mass of the Sun, the magnitude of $\frac{T_{2}}{T_{1}}$ is
(a) $\frac{2}{3} \sqrt{\frac{2 M_{1}}{3 M_{2}}}$
(b) $\frac{3}{2} \sqrt{\frac{3 M_{2}}{2 M_{1}}}$
(c) $\frac{3}{2} \sqrt{\frac{3}{2}}$
(d) $\frac{2}{3} \sqrt{\frac{2}{3}}$

Ans. : (c)
Solution: $T^{2} \propto a^{3} \quad$ For $P_{1}, 2 a_{1}=4 R \Rightarrow a_{1}=2 R$
For $P_{2}, 2 a_{2}=6 R \Rightarrow a_{2}=3 R$
$T^{2} \propto \frac{4 \pi^{2} a^{3}}{G M_{s}} \Rightarrow \frac{T_{2}}{T_{1}}=\left(\frac{a_{2}}{a_{1}}\right)^{3 / 2}=\left(\frac{3 R}{2 R}\right)^{3 / 2}=\left(\frac{3}{2}\right)^{3 / 2}=\frac{3}{2} \frac{\sqrt{3}}{2}$
Option (c) is correct
Q17. The intensity of the primary maximum in a two-slit interference pattern is given by I_{2} and the intensity of the primary maximum in a three-slit interference pattern is given by I_{3}. Assuming the far-field approximation, same slit parameters and intensity of the incident light in both the cases, I_{2} and I_{3} are related as
(a) $I_{2}=\frac{3}{2} I_{3}$
(b) $I_{2}=\frac{9}{4} I_{3}$
(c) $I_{2}=\frac{2}{3} I_{3}$
(d) $I_{2}=\frac{4}{9} I_{3}$

Ans. : (d)
Solution: For two slits, $I_{2}=(a+a)^{2}=4 a^{2}$
For three slits, $I_{3}=(a+a+a)^{2}=9 a^{2}$
$\therefore \frac{I_{2}}{I_{3}}=\frac{4}{9} \Rightarrow I_{2}=\frac{4}{9} I_{3}$
Q18. A short rod of length L and negligible diameter lies along the optical axis of concave mirror at a distance of 3 m . The focal length of the mirror is 1 m and $L \ll 1 \mathrm{~m}$. If L^{\prime} is the length of image of the object in the mirror, then
(a) $\frac{L^{\prime}}{L}=4$
(b) $\frac{L^{\prime}}{L}=2$
(c) $\frac{L^{\prime}}{L}=\frac{1}{16}$
(d) $\frac{L^{\prime}}{L}=\frac{1}{4}$

Ans. : (d)
Solution: For mirror $\frac{1}{u}+\frac{1}{v}=\frac{1}{f} \Rightarrow-\frac{d u}{u^{2}}-\frac{d v}{v^{2}}=0 \Rightarrow \frac{d v}{d u}=-\frac{v^{2}}{u^{2}} \rightarrow \frac{|d v|}{|d u|}=m^{2}$
$\frac{L^{\prime}}{L}=m^{2}$
$m=\frac{v}{u}=\frac{f}{u-f}=\frac{(-1)}{(-3)-(-1)}=\frac{1}{2} \quad \because u=-3 m, f=-1 m$
$\therefore \frac{L^{\prime}}{L}=\frac{1}{4}$

Q19. A beam of unpolarized light of intensity I_{0} falls on a system of four identical linear polarizers placed in a line as shown in figure. The transmission axes of any two successive polarizers make an angle of 30° with each other. If the transmitted light has intensity I, the ratio $\frac{I}{I_{0}}$ is

(a) $\frac{81}{256}$
(b) $\frac{9}{16}$
(c) $\frac{27}{64}$
(d) $\frac{27}{128}$

Ans. : (d)
Solution: $I_{1}=\frac{I_{0}}{2}, I_{2}=\frac{I_{0}}{2} \cos ^{2} 30^{\circ}, I_{3}=I_{2} \cos ^{2} 30=\frac{I_{0}}{2} \cos ^{4} 30^{\circ}$
$I_{4}=I_{3} \cos ^{2} 30^{\circ}=\frac{I_{0}}{2} \cos ^{6} 30^{\circ}=\frac{I_{0}}{2}\left(\frac{\sqrt{3}}{2}\right)^{6}=\frac{27}{128} I_{0}$
Q20. Consider an annular region in free space containing a uniform magnetic field in the z direction, schematically represented by the shaded region in the figure. A particle having charge Q and mass M starts off from point $P(a, 0,0)$ in the $+x$-direction with constant speed v. If the radii of inner and outer circles are a and b, respectively, the minimum magnetic field required so that the particle returns to the inner circle is
(a) $\frac{M v}{Q}\left(\frac{b^{2}-a^{2}}{b}\right)^{-1}$
(b) $\frac{M v}{Q}\left(\frac{b^{2}-a^{2}}{2 b}\right)^{-1}$
(c) $\frac{M v}{Q}\left(\frac{b^{2}-a^{2}}{3 b}\right)^{-1}$
(d) $\frac{M v}{Q}\left(\frac{b^{2}-a^{2}}{4 b}\right)^{-1}$

Ans. 20: (b)

Solution:

In the right angle triangle shown in figure
$(b-r)^{2}=a^{2}+r^{2} \Rightarrow b^{2}+r^{2}-2 b r=a^{2}+r^{2}$
$\Rightarrow r=\frac{b^{2}-a^{2}}{2 b}$
Radius of the circular path is $\quad r=\frac{m v}{Q B}$
$\Rightarrow B=\frac{m v}{Q r}=\frac{m v}{Q}\left(\frac{b^{2}-a^{2}}{2 b}\right)^{-1}$
Q21. A thin conducting square loop of side L is placed in the first quadrant of the $x y$-plane with one of the vertices at the origin. If a changing magnetic field $\vec{B}(t)=\beta_{0}\left(5 z y t \hat{x}+z x t \hat{y}+3 y^{2} t \hat{z}\right)$ is applied, where β_{0} is a constant, then the magnitude of the induced electromotive force in the loop is
(a) $4 \beta_{0} L^{4}$
(b) $3 \beta_{0} L^{4}$
(c) $2 \beta_{0} L^{4}$
(d) $\beta_{0} L^{4}$

Ans. 21: (d)
Solution:
Area element $d \vec{a}=d x d y \hat{z} \Rightarrow \vec{B} \cdot d \vec{a}=3 \beta_{0} y^{2} t d x d y$
Magnetic flux $\phi=\int_{S} \vec{B} \cdot d \vec{a}=\int_{S} 3 \beta_{0} y^{2} t d x d y$
$\Rightarrow \phi=3 \beta_{0} t \int_{0}^{L} d x \int_{0}^{L} y^{2} d y=3 \beta_{0} t \times L \times \frac{L^{3}}{3}=\beta_{0} L^{4} t$

Thus magnitude of e.m.f $|\varepsilon|=\frac{d \phi}{d t}=\beta_{0} L^{4}$
Q22. In which one of the following limits the Fermi-Dirac distribution $n_{F}(\varepsilon, T)=\left(e^{\frac{\varepsilon-\mu}{k_{B} T}}+1\right)^{-1}$ and Bose-Einstein distribution $n_{B}(\varepsilon, T)=\left(e^{\frac{\varepsilon-\mu}{k_{B} T}}-1\right)^{-1}$ reduce to Maxwell-Boltzmann distribution? (Here ε is the energy of the state, μ is the chemical potential, k_{B} is the Boltzmann constant and T is the temperature)
(a) $\mu=0$
(b) $(\varepsilon-\mu) \ll k_{B} T$
(c) $(\varepsilon-\mu) \gg k_{B} T$
(d) $\mu \gg k_{B} T$

Ans. : (c)

Solution: $n_{F}(\varepsilon, T)=\frac{1}{1+e^{\frac{(\varepsilon-\mu)}{k_{B} T}}}, \quad n_{B}(\varepsilon, T)=\frac{1}{e^{\frac{(\varepsilon-\mu)}{k_{B} T}}-1}$
Let $\frac{(\varepsilon-\mu)}{k_{B} T}=x$, If $\frac{(\varepsilon-\mu)}{k_{B} T} \gg 1 \Rightarrow(\varepsilon-\mu) \gg k_{B} T$
If $x \gg 1 \Rightarrow e^{x} \gg 1$, then $n_{F}(\varepsilon, T)=e^{-x}, n_{B}(\varepsilon, T)=e^{-x}$ which is M.B.
Q23. Consider N classical particles at temperature T, each of which can have two possible energies 0 and ε. The number of particles in the lower energy level (N_{0}) and higher energy level $\left(N_{\varepsilon}\right)$ levels are related by (k_{B} is the Boltzmann constant)
(a) $\frac{N_{0}}{N_{\varepsilon}}=e^{\frac{-\varepsilon}{k_{B} T}}$
(b) $\frac{N_{0}}{N_{\varepsilon}}=e^{\frac{\varepsilon}{k_{B} T}}$
(c) $\frac{N_{0}}{N_{\varepsilon}}=1+e^{\frac{\varepsilon}{k_{B} T}}$
(d) $\frac{N_{0}}{N_{\varepsilon}}=1-e^{\frac{-\varepsilon}{k_{B} T}}$

Ans. : (b)
Solution: $\because N_{E}=N_{0} e^{-\beta E} \Rightarrow \frac{N_{E}}{N_{0}}=e^{-\beta E} \Rightarrow \frac{N_{0}}{N_{E}}=e^{\beta E}$
Q24. The root mean square (rms) speeds of Hydrogen atoms at $500 \mathrm{~K}, V_{H}$ and Helium atoms at $2000 \mathrm{~K}, V_{\text {He }}$ are related as
(a) $V_{H}>V_{H e}$
(b) $V_{H}<V_{H e}$
(c) $V_{H}=V_{\mathrm{He}}$
(d) $V_{H} \gg V_{H e}$

Ans. : (c)
Solution: $V_{r m s}=\sqrt{\frac{3 k_{B} T}{m}}, V_{H}=\sqrt{\frac{3 R T_{H}}{M_{H}}}$ and $V_{\text {He }}=\sqrt{\frac{3 R T_{\text {He }}}{M_{\text {He }}}}$
$\frac{V_{H}}{V_{H e}}=\sqrt{\frac{T_{H}}{M_{H}} \times \frac{M_{H e}}{T_{H e}}}=\sqrt{\frac{500}{2000} \times \frac{4}{2}} \quad \Rightarrow \frac{V_{H}}{V_{H e}}=0.7070$.
Therefore $V_{H}<V_{\text {He }}$
Q25. The normalized ground-state wave function of a one-dimensional quantum harmonic oscillator with force constant K and mass m is $\psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}$, where $\alpha=m \omega_{0} / \hbar$ and $\omega_{0}^{2}=K / m$. Which one of the following is the probability of finding the particle outside the classically allowed region? (The classically allowed region is where the total energy is greater than the potential energy)
(a) $\frac{2}{\sqrt{\pi}} \int_{1}^{\infty} y^{2} e^{-y^{2}} d y$
(b) $\frac{2}{\sqrt{\pi}} \int_{1}^{\infty} e^{-y^{2}} d y$
(c) 0.5
(d) 0

Ans. : (b)

Solution: Turning point is
$\alpha_{1}=-\sqrt{\frac{2 E}{m \omega_{0}^{2}}}=-\sqrt{\frac{\hbar}{m \omega_{0}}}$ and $\alpha_{2}=+\sqrt{\frac{\hbar}{m \omega_{0}}}$
Probability to find the particle in classical forbidden region
$2 \int_{\alpha}^{\infty}\left|\psi_{0}\right|^{2} d x=2 \int_{\sqrt{\frac{\hbar}{m \omega_{0}}}}^{\infty}\left(\frac{\alpha}{\pi}\right)^{1 / 2} e^{-\alpha x^{2}} d x=2 \times\left(\frac{m \omega_{0}}{\pi \hbar}\right)^{1 / 2} \int_{\sqrt{\frac{\hbar}{m \omega_{0}}}}^{\infty} e^{-\frac{m \omega_{0} x^{2}}{\hbar}} d x$
Let $\sqrt{\frac{m \omega_{0}}{\hbar}} x=y \Rightarrow d x=\sqrt{\frac{\hbar}{m \omega_{0}}} d y$
If $x=\sqrt{\frac{\hbar}{m \omega_{0}}} \Rightarrow y=1$ and if $x=\infty \Rightarrow y=\infty$
Thus $2 \times\left(\frac{m \omega_{0}}{\pi \hbar}\right)^{1 / 2} \sqrt{\frac{\hbar}{m \omega_{0}}} \int_{1}^{\infty} e^{-y^{2}} d y=\frac{2}{\sqrt{\pi}} \int_{1}^{\infty} e^{-y^{2}} d y$
Therefore, option (b) is correct.
Q26. A linear operator \hat{O} acts on two orthonormal states of a system ψ_{1} and ψ_{2} as per following: $\hat{O} \psi_{1}=\psi_{2}, \hat{O} \psi_{2}=\frac{1}{\sqrt{2}}\left(\psi_{1}+\psi_{2}\right)$. The system is in a superposed state defined by $\psi=\frac{1}{\sqrt{2}} \psi_{1}+\frac{i}{\sqrt{2}} \psi_{2}$. The expectation value of \hat{O} in the state ψ is
(a) $\frac{1}{2 \sqrt{2}}(1+i(\sqrt{2}+1))$
(b) $\frac{1}{2 \sqrt{2}}(1-i(\sqrt{2}+1))$
(c) $\frac{1}{2 \sqrt{2}}(1+i(\sqrt{2}-1))$
(d) $\frac{1}{2 \sqrt{2}}(1-i(\sqrt{2}-1))$

Ans. : (d)
Solution: $\hat{O}\left|\psi_{1}\right\rangle=\left|\psi_{2}\right\rangle$
$\hat{O}\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle \quad|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi_{1}\right\rangle\right)+\frac{i}{\sqrt{2}}\left(\left|\psi_{2}\right\rangle\right)$

$$
\langle\psi|=\frac{1}{\sqrt{2}}\left\langle\psi_{1}\right|-\frac{i}{\sqrt{2}}\left\langle\psi_{2}\right|
$$

$\langle\hat{O}\rangle=\frac{\langle\psi| \hat{O}|\psi\rangle}{\langle\psi \mid \psi\rangle}$ $\langle\psi \mid \psi\rangle=1$
$\hat{O}|\psi\rangle=\frac{1}{\sqrt{2}} \hat{O}\left|\psi_{1}\right\rangle+\frac{i}{\sqrt{2}} \hat{O}\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\psi_{2}\right\rangle+\frac{i}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\left|\psi_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\psi_{2}\right\rangle\right)$
$=\frac{i}{2}\left|\psi_{1}\right\rangle+\left(\frac{1}{\sqrt{2}}+\frac{i}{2}\right)\left|\psi_{2}\right\rangle=\langle\psi| \hat{O}|\psi\rangle=\frac{i}{2 \sqrt{2}}-\frac{i}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}+\frac{i}{2}\right)$
$=\frac{i}{2 \sqrt{2}}-\frac{i}{2}+\frac{1}{2 \sqrt{2}}=\frac{i}{2 \sqrt{2}}(1+(1-\sqrt{2}) i)=\frac{1}{2 \sqrt{2}}(1-i(\sqrt{2}-1))$
Q27. Consider a one-dimensional infinite potential well of width a. The system contains five non-interacting electrons, each of mass m, at temperature $T=0 K$. The energy of the highest occupied state is
(a) $\frac{25 \pi^{2} \hbar^{2}}{2 m a^{2}}$
(b) $\frac{10 \pi^{2} \hbar^{2}}{2 m a^{2}}$
(c) $\frac{5 \pi^{2} \hbar^{2}}{2 m a^{2}}$
(d) $\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$

Ans. : (d)
Solution: Ground state have two electrons so energy is $2 E_{0}$.
First excited state has two electrons, $2 \cdot\left(4 E_{0}\right)$.
Second excited state has remaining 1 electron, $1 \times 9 E_{0}$ where $E_{0}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$
So, energy at highest occipital level is $9 \times \frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$
Q28. Consider the crystal structure shown in the figure, where black and grey spheres represent atoms of two different elements and a denotes the lattice constant. The Bravais lattice for this structure is

(a) Simple cubic
(b) Face-centered cubic
(c) Body-centered cubic
(d) Triclinic

Ans. : (b)
Solution: This is a structure of sodium-chloride whose lattice is Face Centred Cubic. Thus, the correct option is (b)

Q29. For unbiased Silicon n-p-n transistor in thermal equilibrium, which one of the following electronic energy band diagrams is correct? ($E_{c}=$ conduction band minimum, $E_{v}=$ valence band maximum, $E_{F}=$ Fermi level).
(a)

(c)

(b)

(d)

Ans. 29: (b)

Solution:

In equilibrium fermi-level on each side aligned.
Q30. In the circuit shown in the figure, both OPAMPs are ideal. The output for the circuit $V_{\text {out }}$ is

(a) $20 V_{1}+10 V_{2}$
(b) $-20 V_{1}+10 V_{2}$
(c) $10 V_{1}-20 V_{2}$
(d) $20 V_{1}-10 V_{2}$

Ans. 30: (d)

Solution:

Output of first op-amp is $V_{01}=-\frac{10 R}{R} V_{1}=-10 V_{1}$.
Thus $V_{\text {out }}=-\frac{10 R}{5 R}\left(-10 V_{1}\right)+\left(-\frac{10 R}{R}\right) V_{2} \Rightarrow V_{\text {out }}=20 V_{1}-10 V_{2}$

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q31 - Q40 carry two marks each.

Q31. If P and Q are Hermitian matrices which of the following is/are true?
(A matrix P is Hermitian if $P=P^{\dagger}$, where the elements $P_{i j}^{\dagger}=P_{j i}^{*}$)
(a) $P Q+Q P$ is always Hermitian
(b) $i(P Q-Q P)$ is always Hermitian
(c) $P Q$ is always Hermitian
(d) $P Q-Q P$ is always Hermitian

Ans. : (a), (b)
Solution: $(P Q+Q P)^{\dagger}=(P Q)^{\dagger}+(Q P)^{\dagger}=Q^{\dagger} P^{\dagger}+P^{\dagger} Q^{\dagger}=Q P+P Q$
$(P Q)^{\dagger}=Q^{\dagger} P^{\dagger}=Q P$
$(P Q-Q P)^{\dagger}=Q P-P Q$
$[i(P Q-Q P)]^{\dagger}=-i\left(Q^{\dagger} P^{\dagger}-P^{\dagger} Q^{\dagger}\right)=-i(Q P-P Q)=i(P Q-Q P)$
Q32. Consider a vector function $\vec{u}(\vec{r})$ and two scalar functions $\psi(\vec{r})$ and $\phi(\vec{r})$. The unit vector \hat{n} is normal to the elementary surface $d S, d V$ is an infinitesimal volume, $\overrightarrow{d l}$ is an infinitesimal line element and $\frac{\partial}{\partial n}$ denotes the partial derivative along \hat{n}. Which of the following identities is/are correct?
(a) $\quad \int_{V} \vec{\nabla} \cdot \vec{u} d V=\oint_{S} \vec{u} \cdot \hat{n} d S$, where surface S bounds the volume V
(b) $\int_{V}\left[\psi \nabla^{2} \phi-\phi \nabla^{2} \psi\right] d V=\oint_{S}\left[\psi \frac{\partial \phi}{\partial n}-\phi \frac{\partial \psi}{\partial n}\right] d S$, where surface S bounds the volume V
(c) $\int_{V}\left[\psi \nabla^{2} \phi-\phi \nabla^{2} \psi\right] d V=\oint_{S}\left[\psi \frac{\partial \phi}{\partial n}+\phi \frac{\partial \psi}{\partial n}\right] d S$, where surface S bounds the volume V
(d) $\oint_{C} \vec{u} \cdot \overrightarrow{d l}=\iint_{S}(\vec{\nabla} \times \vec{u}) \cdot \hat{n} d S$, where C is the boundary of surface S

Ans. 32: (a), (b) and (d)

Solution:

(a) Gauss Divergence Theorem
(b) $\int_{V} \psi \nabla^{2} \phi d V=\int_{V} \psi \vec{\nabla} \cdot(\vec{\nabla} \phi) d V=\oint_{S}(\vec{\nabla} \phi) \cdot d \vec{S}=\oint_{S} \psi \frac{\partial \phi}{\partial n} d S$

Similarly $-\int_{V} \phi \nabla^{2} \psi d V=-\int_{V} \phi \vec{\nabla} \cdot(\vec{\nabla} \psi) d V=-\oint_{S} \phi(\vec{\nabla} \psi) \cdot d \vec{S}=-\oint_{S} \phi \frac{\partial \psi}{\partial n} d S$
Hence option (b) is correct.
(d) Stoke's Theorem

Q33. A thin rod of uniform density and length $2 \sqrt{3} m$ is undergoing small oscillations about a pivot point. The time period of oscillation $\left(T_{m}\right)$ is minimum when the distance of the pivot point from the center-of-mass of the rod is x_{m}. Which of the following is/are correct?
(a) $x_{m}=1 m$
(b) $x_{m}=\frac{\sqrt{3}}{2} m$
(c) $T_{m}=\frac{2 \pi}{\sqrt{3}} s$
(d) $T_{m}=\frac{2 \pi}{\sqrt{5}} s$

Ans. : (a), (d)
Solution: Time period of rod of length L is $T=2 \pi \sqrt{\frac{I}{M g R}}$
where $I=\frac{M l^{2}}{12}+M x^{2}, R=x$ and $l=2 \sqrt{3}$
$T^{2}=4 \pi^{2}\left[\frac{M l^{2}}{12 \cdot M g x}+\frac{M x^{2}}{M g x}\right] \Rightarrow T=2 \pi \sqrt{\frac{l^{2}}{12 g x}+\frac{x}{g}}$
$\because T^{2}=\frac{4 \pi^{2}}{g}\left(\frac{l^{2}}{12 x}+x\right)$
$\frac{d T^{2}}{d x}=0 \Rightarrow \frac{4 \pi^{2}}{g}\left(-\frac{l}{12 x^{2}}+1\right)=0 \Rightarrow x^{2}=\frac{l^{2}}{12} \Rightarrow x^{2}=\frac{4 \times 3}{12}=1 \Rightarrow x=1 \mathrm{~m}$
$T=2 \pi \sqrt{\frac{l^{2}}{12 g x}+\frac{x}{g}}=2 \pi \sqrt{\frac{1}{10}+\frac{1}{10}}=2 \pi \sqrt{\frac{2}{10}}=\frac{2 \pi}{\sqrt{5}} \mathrm{sec}$.
Hence option (a) and (d) are correct.
Q34. Three sinusoidal waves off the same frequency travel with the same speed along the positive x-direction. The amplitudes of the waves are $a, \frac{a}{2}$ and $\frac{a}{3}$ and the phase constants of the waves are $\frac{\pi}{2}, \pi$ and $\frac{3 \pi}{2}$, respectively. If A_{m} and φ_{m} are the amplitude
and phase constant of the wave resulting from the superposition of the three waves, which of the following is/are correct?
(a) $A_{m}=\frac{5}{6} a$
(b) $\varphi_{m}=\frac{\pi}{2}+\tan ^{-1}\left(\frac{3}{4}\right)$
(c) $A_{m}=\frac{7}{6} a$
(d) $\varphi_{m}=\tan ^{-1}\left(\frac{2}{3}\right)$

Ans. : (a), (b)
Solution: $y_{1}=a \sin \left(\omega t+\frac{\pi}{2}\right)=a \cos \omega t, y_{2}=\frac{a}{2} \sin (\omega t+\pi)=-\frac{a}{2} \sin \omega t$,
$y_{3}=\frac{a}{3} \sin \left(\omega t+\frac{3 \pi}{2}\right)=-\frac{a}{3} \cos \omega t$
$y=y_{1}+y_{2}+y_{3}=\frac{2 a}{3} \cos \omega t-\frac{a}{2} \sin \omega t=A_{m} \sin (\omega t+\theta)$
$A_{m}=\sqrt{\left(\frac{2 a}{3}\right)^{2}+\left(-\frac{a}{2}\right)^{2}}=a \sqrt{\frac{4}{9}+\frac{1}{4}}=a \sqrt{\frac{16+9}{36}}=\frac{5}{6} a$
$A_{m} \cos \phi_{m}=-\frac{a}{2}, \quad A_{m} \sin \phi_{m}=\frac{2 a}{3}$
$\Rightarrow \tan \phi_{m}=-\frac{2 a}{3} \frac{2}{a}=-\frac{4}{3} \Rightarrow-\tan \phi_{m}=\frac{4}{3} \Rightarrow-\cot \left(\frac{\pi}{2}-\phi_{m}\right)=\frac{4}{3} \Rightarrow \cot \left(\phi_{m}-\frac{\pi}{2}\right)=\frac{4}{3}$
$\Rightarrow \tan \left(\phi_{m}-\frac{\pi}{2}\right)=\frac{3}{4} \Rightarrow \phi_{m}-\frac{\pi}{2}=\tan ^{-1} \frac{3}{4} \Rightarrow \phi_{m}=\frac{\pi}{2}+\tan ^{-1}\left(\frac{3}{4}\right)$
Q35. An object executes simple harmonic motion along the x-direction with angular frequency ω and amplitude a. The speed of the object is $4 \mathrm{~cm} / \mathrm{s}$ and $2 \mathrm{~cm} / \mathrm{s}$ when it is at distances 2 cm and 6 cm respectively from the equilibrium position. Which of the following is/are correct?
(a) $\omega=\sqrt{\frac{3}{8}} \mathrm{rad} / \mathrm{s}$
(b) $\omega=\sqrt{\frac{5}{6}} \mathrm{rad} / \mathrm{s}$
(c) $a=\sqrt{\frac{140}{3}} \mathrm{~cm}$
(d) $a=\sqrt{\frac{175}{6}} \mathrm{~cm}$

Ans. : (a), (c)
Solution: $x=A \sin (\omega t)$
$\Rightarrow u=\frac{d x}{d t}=A \omega \cos (\omega t)=A \omega \sqrt{1-\frac{x^{2}}{A^{2}}}=\omega \sqrt{A^{2}-x^{2}}$
$\Rightarrow u^{2}=\omega^{2}\left(A^{2}-x^{2}\right)$
$\therefore(4)^{2}=\omega^{2}\left(a^{2}-2^{2}\right)$
$(2)^{2}=\omega^{2}\left(a^{2}-6^{2}\right)$
Divide (i) and (ii), we get
$\frac{16}{4}=\frac{a^{2}-4}{a^{2}-36} \Rightarrow a=\sqrt{\frac{140}{3}}$
$\therefore \omega=\frac{u}{\sqrt{a^{2}-x^{2}}}=\frac{2}{\sqrt{\frac{140}{3}-6^{2}}}=\frac{2}{\sqrt{\frac{140}{3}-36}}=\sqrt{\frac{3}{8}} \mathrm{rad} / \mathrm{sec}$
Thus, $a=\sqrt{\frac{140}{3}}$ and $\omega=\sqrt{\frac{3}{8}} \mathrm{rad} / \mathrm{sec}$
Q36. For electric and magnetic field \vec{E} and \vec{B}, due to a charge density $\rho(\vec{r}, t)$ and a current density $\vec{J}(\vec{r}, t)$, which of the following relations is/are always correct?
(a) $\vec{\nabla} \times \vec{E}=0$
(b) $\vec{\nabla} \cdot \vec{B}=0$
(c) $\vec{\nabla} \cdot \vec{J}-\frac{\partial \rho}{\partial t}=0$
(d) $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$, where \vec{F} is the force on a particle with charge q moving with velocity \vec{v}
Ans. : (b), (d)
Q37. A spherical dielectric shell with inner radius a and outer radius b, has polarization $\vec{P}=\frac{k}{r^{2}} \hat{r}$, where k is a constant and \hat{r} is the unit vector along the radial direction.

Which of the following statements is/are correct?
(a) The surface density of bound charges on the inner and outer surfaces are $-k$ and $+k$, respectively. The volume density of bound charges inside the dielectric is zero
(b) The surface density of bound charges is zero on both the inner and outer surfaces. The volume density of bound charges inside the dielectric is $+k$

Physics by fiziks

(c) The surface density of bound charges on the inner and outer surfaces are $\frac{-k}{a^{2}}$ and $\frac{k}{b^{2}}$, respectively. The volume density of bound charges inside the dielectric is zero
(d) The surface density of bound charges is zero on both the inner and outer surfaces. The volume density of bound charges inside the dielectric is $\frac{3 k}{4 \pi\left(b^{3}-a^{3}\right)}$

Ans. 37: (c)

Solution:

$\rho_{b}=-\vec{\nabla} \cdot \vec{P}=-\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \times \frac{k}{r^{2}}\right)=0$
$\sigma_{b}(r=a)=\vec{P} . \hat{n}=\frac{k}{a^{2}} \hat{r} .(-\hat{r})=-\frac{k}{a^{2}}$
and $\sigma_{b}(r=b)=\vec{P} . \hat{n}=\frac{k}{b^{2}} \hat{r} .(\hat{r})=\frac{k}{b^{2}}$

Q38. One mole of an ideal gas having specific heat ratio (γ) of 1.6 is mixed with one mole of another ideal gas having specific heat ratio of 1.4. If C_{V} and C_{P} are the molar specific heat capacities of the gas mixture at constant volume and pressure, respectively, which of the following is/are correct? (R denotes thee universal gas constant).
(a) $C_{V}=2.08 R$
(b) $C_{p}=2.9 R$
(c) $C_{p}=1.48 C_{V}$
(d) $C_{p}=1.52 C_{V}$

Ans. : (a), (c)
Solution: $n_{1}=1, n_{2}=1, \gamma_{1}=1.6, \gamma_{2}=1.4, C_{V}=\frac{R}{\gamma-1}$
$C_{V}=\frac{n_{1} C_{V_{1}}+n_{2} C_{V_{2}}}{n_{1}+n_{2}}=\frac{R}{2}\left[\frac{1}{1.6-1}+\frac{1}{1.4-1}\right]=2.08 R$
$C_{p}=C_{V}+R=3.08 R \Rightarrow \frac{C_{p}}{C_{V}}=\frac{3.08}{2.08}=1.48$

Q39. Two relativistic particles with opposite velocities collide head-on and come to rest by sticking with each other. Which of the following quantities is/are conserved in the collision?
(a) Total momentum
(b) Total energy
(c) Total kinetic energy
(d) Total rest mass

Ans. : (a), (b)
Q40. Figure shows a circuit diagram comprising Boolean logic gates and the corresponding timing diagrams show the digital signals at various points in the circuit. Which of the following is/are true?

(a) Points 3 and 7 are shorted
(b) The NOT gate on the right is faulty
(c) The AND gate is faulty and acts like a NOR gate
(d) The AND gate is faulty and acts like an OR gate

Ans. : (d)

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

Q41- Q50 carry one mark each.

Q41. The line integral of the vector function $\vec{u}(x, y)=2 y \hat{i}+x \hat{j}$ along the straight line from $(0,0)$ to $(2,4)$ is \qquad
Ans. 41: 12
Solution: $\vec{u}=2 y \hat{i}+x \hat{j}, \quad(0,0) \rightarrow(2,4)$, Line equation is $y=2 x \Rightarrow d y=2 d x$ and $d \vec{l}=d x \hat{i}+d y \hat{j}$.
$\Rightarrow \vec{u} \cdot d \vec{l}=2 y d x+x d y \Rightarrow \vec{u} \cdot d \vec{l}=2 \times 2 x \times d x+x(2 d x) \Rightarrow \vec{u} \cdot d \vec{l}=6 x d x$
Thus $\int \vec{u} \cdot d \vec{l}=\int_{0}^{2} 6 x d x=6\left[\frac{x^{2}}{2}\right]_{0}^{2}=12$
Q42. Consider a thin bi-convex lens of relative refractive index $n=1.5$. The radius of curvature of one surface of the lens is twice that of the other. The magnitude of larger radius of curvature in units of the focal length of the lens is \qquad (Round off to 1 decimal place)
Ans. : 1.5
Solution: $\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \Rightarrow \frac{1}{f}=(1.5-1)\left(\frac{1}{R}-\frac{1}{-2 R}\right)=0.5\left(\frac{1}{R}+\frac{1}{2 R}\right)$
$\Rightarrow \frac{1}{f}=\frac{0.5 \times 3}{2 R} \Rightarrow 4 R=3 f \Rightarrow 2 R=\frac{3 f}{2}=1.5 f$
Q43. Water flows in a horizontal pipe in a streamlined manner at an absolute pressure of $4 \times 10^{5} \mathrm{~Pa}$ and speed of $6 \mathrm{~m} / \mathrm{s}$. If it exits the pipe at a pressure of $10^{5} \mathrm{~Pa}$, the speed of water at the exit point is \qquad m / s (Round off to 1 decimal place)
(The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$)
Ans. : 25.2
Solution: Applying Bernoulli's equation; $P_{1}+\frac{1}{2} \rho V_{1}^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho V_{2}^{2}+\rho g h_{2}$
As $h_{1}=h_{2} \Rightarrow P_{1}+\frac{\rho V_{1}^{2}}{2}=P_{2}+\frac{\rho V_{2}^{2}}{2}$
$4 \times 10^{5}+1000 \times \frac{6 \times 6}{2}=10^{5}+1000 \times \frac{V_{2}^{2}}{2} \Rightarrow V_{2}=25.21 \mathrm{~m} / \mathrm{sec}$

Q44. Consider a retarder with refractive indices $n_{e}=1.551$ and $n_{o}=1.542$ along the extraordinary and ordinary axes, respectively. The thickness of this retarder for which a left circularly polarized light of wavelength 600 nm will be converted into a right circularly polarized light is \qquad μm. (Round off to 2 decimal place)

Ans. : 33.33
Solution: $\left(n_{e}-n_{o}\right) t=\frac{\lambda}{2} \Rightarrow t=\frac{\lambda}{2\left(n_{e}-n_{o}\right)}=\frac{600 \times 10^{-9}}{2(1.551-1.542)} \mathrm{m}$
$\Rightarrow t=\frac{600}{2 \times 0.009} \times 10^{-9}=\frac{600}{2 \times 9} \times 10^{-6}=\frac{100}{3} \times 10^{-6}=33.33 \times 10^{-6} \mathrm{~m}=33.33 \mu \mathrm{~m}$
Q45. Using a battery a 10 pF capacitor is charged to 50 V and then the battery is removed. After that, a second uncharged capacitor is connected to the first capacitor in parallel. If the final voltage across the second capacitor is 20 V , its capacitance is \qquad $p F$.

Ans. 45: 15

Solution:

Case I: Capacitor is charged upto $q=C V=10 p F \times 50 \mathrm{~V}=500 \mathrm{pC}$,
Case II: First Capacitor is connected in parallel to second and common voltage is 20 V .
$q=q_{1}+q_{2}=500 p C \Rightarrow 10 p F \times 20 \mathrm{~V}+q_{2}=500 p C$
$\Rightarrow q_{2}=300 p C \Rightarrow C_{2} \times 20 \mathrm{~V}=300 p C \Rightarrow C_{2}=15 p F$
Q46. Consider two spherical perfect blackbodies with radii R_{1} and R_{2} at temperatures $T_{1}=1000 \mathrm{~K}$ and $T_{2}=2000 \mathrm{~K}$, respectively. They both emit radiation of power 1 kW . The ratio of their radii R_{1} / R_{2} is given by \qquad -

Ans. : 4
Solution: $P_{1}=\sigma 4 \pi R_{1}^{2} T_{1}^{4}$ and $P_{2}=\sigma 4 \pi R_{2}^{2} T_{2}^{4}$
$\because \frac{P_{1}}{P_{2}}=1 \Rightarrow R_{1}^{2} T_{1}^{4}=R_{2}^{2} T_{2}^{4} \Rightarrow \frac{R_{1}^{2}}{R_{2}^{2}}=\frac{T_{2}^{4}}{T_{1}^{4}}$
$\Rightarrow \frac{R_{1}}{R_{2}}=\frac{T_{2}^{2}}{T_{1}^{2}}=\frac{(2000)^{2}}{(1000)^{2}}=4$

Q47. In a Compton scattering experiment, the wavelength of incident X-rays is $0.500{ }^{0}$. If the Compton wavelength λ_{c} is 0.024 A , the value of the longest wavelength possible for the scattered X-ray is \qquad A (specify up to 3 decimal places) Ans. : 0.548
Solution: $\Delta \lambda=\frac{h}{m c}(1-\cos \phi)$
$\lambda_{2}-\lambda_{1}=\frac{h}{m c} \times 2$
$\lambda_{2}=0.024 \times 2+0.500=0.048+0.500=0.548 \mathrm{~A}$
Q48. A solid with FCC crystal structure is probed using X-rays of wavelength 0.2 nm . For the crystallographic plane given by $(2,0,0)$, a first order diffraction peak is observed for a Bragg angle of 21^{0}. The unit cell size is \qquad nm (Round off to 2 decimal places) Ans. : 0.56
Solution: $2 d \sin \theta=\lambda \Rightarrow \frac{2 a \sin \theta}{\sqrt{h^{2}+k^{2}+l^{2}}}=\lambda$
$\Rightarrow a=\frac{\lambda}{2 \sin \theta} \sqrt{h^{2}+k^{2}+l^{2}}=\frac{0.2 \times 10^{-9}}{2 \times \sin \left(21^{0}\right)} \sqrt{2^{2}+0+0}=\frac{0.2 \mathrm{~nm}}{2 \times 0.36} \times 2=0.56 \mathrm{~nm}$
Q49. The figure shows a circuit containing two diodes D_{1} and D_{2} with threshold voltages $V_{T H}$ of 0.7 V and 0.3 V , respectively. Considering the simplified diode model, which assumes diode $I-V$ characteristic as shown in the plot on the right, the current through the resistor R is \qquad $\mu \mathrm{A}$.

Ans. 49: 97

Solution:

Diodes $D_{1}(S i)$ and $D_{2}(G e)$ are in parallel. So once switch is ON, $D_{2}(G e)$ will be ON and
$D_{1}(S i)$ will be OFF.
$I=\frac{10 \mathrm{~V}-0.3 \mathrm{~V}}{100 \mathrm{k} \Omega}=\frac{9.7}{100} \mathrm{~mA}=97 \mu \mathrm{~A}$

Q50. An ideal gas undergoes an isothermal expansion along a path $A B$, adiabatic expansion along $B C$, isobaric compression along $C D$, isothermal compression along $D E$, and adiabatic compression along $E A$, as shown in the figure. The work done by the gas along the process $B C$ is 10 J . The change in the internal energy along process $E A$ is 16 J . The absolute value of the change in the internal energy along the process $C D$ is

\qquad J

Ans. : 6
Solution: $\Delta U_{A B}=0, \Delta U_{D E}=0$
$\because \Delta U=0$
$\Delta U_{B C}+\Delta U_{C D}+\Delta U_{E A}=0$
$-10+\Delta U_{C D}+16=0$
$\Rightarrow \Delta U_{C D}=-6$

Q51- Q60 carry two marks each.

Q51. If a function $y(x)$ is described by the initial-value problem $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0$, with initial conditions $y(0)=2$ and $\left(\frac{d y}{d x}\right)_{x=0}=0$, then the value of y at $x=1$ is \qquad -
(Round off to 2 decimal places)
Ans. : 0.60
Solution: $y=c_{1} e^{-2 x}+c_{2} e^{-3 x}$

$$
\because y(0)=2
$$

$\Rightarrow 2=c_{1}+c_{2}$
$y^{\prime}=-2 c_{1} e^{-2 x}-3 c_{2} e^{-3 x}$

$$
\begin{equation*}
\because\left(\frac{d y}{d x}\right)_{x=0}=0 \tag{i}
\end{equation*}
$$

$\Rightarrow 0=-2 c_{1}-3 c_{2}$
Solve (i) and (ii) we will get; $c_{1}=6, c_{2}=-4$
$\Rightarrow y=6 e^{-2 x}-4 e^{-3 x} \Rightarrow y(1)=0.6$
Q52. A vehicle of mass 600 kg with an engine operating at constant power P accelerates from rest on a straight horizontal road. The vehicle covers a distance of 600 m in 1 minute. Neglecting all losses, the magnitude of P is \qquad $k W$. (Round off to 2 decimal places)
Ans. : 1.11 to 1.13
Solution:

Q53. The angular momentum of a particle relative to origin varies with time (t) as $\vec{L}=\left(4 \hat{x}+a t^{2} \hat{y}\right) \mathrm{kgm}^{2} / \mathrm{s}$, where $a=1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{3}$. The angle between \vec{L} and the torque acting on the particle becomes 45° after a time of \qquad s.

Ans.: 2
Solution: $\vec{L}=\left(4 i+\alpha t^{2} \hat{j}\right) \Rightarrow \vec{\tau}=\frac{d \vec{L}}{d t}=2 \alpha t \hat{j}$
$\cos \left(\frac{\pi}{4}\right)=\frac{\vec{L} \cdot \vec{\tau}}{|L||\tau|} \Rightarrow \frac{1}{\sqrt{2}}=\frac{2 \alpha^{2} t^{3}}{\sqrt{16+\alpha^{2} t^{4}} \times 2 \alpha t}=\frac{\alpha t^{2}}{\sqrt{16+\alpha^{2} t^{4}}}$
$16+\alpha^{2} t^{4}=2 \alpha^{2} t^{4} \Rightarrow \alpha^{2} t^{4}=16 \Rightarrow t^{4}=\frac{16}{\alpha^{2}}=\frac{16}{1} \Rightarrow t=(16)^{1 / 4}=2 \mathrm{sec}$
Q54. Two transverse waves $y_{1}=5 \cos (k x-\omega t) \mathrm{cm}$, and $y_{2}=5 \cos (k x+\omega t) \mathrm{cm}$, travel on a string along x-axis. If the speed of a point at $x=0$ is zero at $t=0 \mathrm{~s}, 0.25 \mathrm{~s}$ and 0.5 s , then the minimum frequency of the waves is \qquad Hz.

Ans. : 2

Solution:

Time difference (Separation) between two zero velocities
$\frac{T}{2}=0.25 \mathrm{~s} ; \quad T=0.5 \mathrm{~s}$
So, frequency $f=\frac{1}{T}=\frac{1}{0.5}=2 \mathrm{~Hz}$
Q55. For the ac circuit shown in the figure, $R=100 \mathrm{k} \Omega$ and $C=10 \mathrm{pF}$, the phase difference between $V_{\text {in }}$ and $V_{\text {out }}$ is 90° at the input signal frequency of \qquad kHz . (Round off to 2 decimal places)

Ans. 55: 159.2

Solution:

$V_{A}=\left(\frac{X_{C}}{R+X_{C}}\right) V_{\text {in }}$ and $V_{B}=\left(\frac{R}{R+X_{C}}\right) V_{\text {in }}$
$\Rightarrow V_{\text {out }}=V_{B}-V_{A} \Rightarrow V_{\text {out }}=\left(\frac{R-X_{C}}{R+X_{C}}\right) V_{\text {in }} \Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=\left(\frac{j \omega C R-1}{j \omega C R+1}\right)$
$\Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=\left(\frac{\sqrt{1+(\omega C R)^{2}}}{\sqrt{1+(\omega C R)^{2}}}\right) \frac{e^{-j \theta}}{e^{j \theta}}=e^{-j 2 \theta} \quad$ where $\theta=\tan ^{-1}(\omega R C)$
Thus $\phi=-2 \theta=-2 \tan ^{-1}(\omega R C) \Rightarrow-\frac{\pi}{2}=-2 \tan ^{-1}(2 \pi f R C) \Rightarrow 2 \pi f R C=1$
$\Rightarrow f=\frac{1}{2 \pi R C} \Rightarrow f=\frac{1}{2 \times 3.14 \times\left(100 \times 10^{3} \Omega\right)\left(10 \times 10^{-12} \mathrm{~F}\right)} \mathrm{Hz}$
$\Rightarrow f=\frac{10^{6}}{2 \times 3.14} \mathrm{~Hz}=\frac{1000}{2 \times 3.14} \mathrm{kHz}=159.2 \mathrm{kHz}$
Q56. The magnetic fields in tesla in the two regions separated by the $z=0$ plane are given by $\vec{B}_{1}=3 \hat{x}+5 \hat{z}$ and $\vec{B}_{2}=\hat{x}+3 \hat{y}+5 \hat{z}$. The magnitude of the surface current density at the interface between the two regions is $\alpha \times 10^{6} \mathrm{~A} / \mathrm{m}$. Given the permeability of the free space $\mu_{0}=4 \pi \times 10^{-7} N / A^{2}$, the value of α is \qquad . (Round off 2 decimal places)

Ans. 56: 2.86

Solution:

$\vec{B}_{1}^{\|}=3 \hat{x}$ and $\vec{B}_{2}^{\|}=\hat{x}+3 \hat{y}$. Thus $\vec{B}_{1}^{\|}-\vec{B}_{2}^{\|}=2 \hat{x}-3 \hat{y} \Rightarrow\left|\vec{B}_{1}^{\|}-\vec{B}_{2}^{\|}\right|=\sqrt{4+9}=\sqrt{13}$
$\because\left|\vec{B}_{1}^{\|}-\vec{B}_{2}^{\prime \prime}\right|=\mu_{0} K \Rightarrow \mu_{0} K=\sqrt{13} \Rightarrow K=\frac{\sqrt{13}}{\mu_{0}}=\frac{3.6}{4 \pi \times 10^{-7}}=2.86 \times 10^{6} \quad \Rightarrow \alpha=2.86$
Q57. A body at a temperature T is brought into contact with a reservoir at temperature $2 T$. Thermal equilibrium is established at constant pressure. The heat capacity of the body at constant pressure is C_{p}. The total change in entropy of the body and the reservoir in units of C_{p} is \qquad (Round off 2 decimal places)

Ans. : 0.19 to 0.20
Solution: $\Delta S_{B}=\int_{T}^{2 T} C_{P} \frac{d T}{T}=C_{P} \ln 2$ Body heat absorbed positive
$\Delta S_{R}=\frac{1}{2 T} \int_{T}^{2 T} C_{P} d T=\frac{C_{P} T}{2 T}=\frac{C_{P}}{2} \quad$ Reservoir liberated negative
$\Delta S=C_{P}[0.693-0.5]=C_{P} 0.193$

Q58. One mole of an ideal monoatomic gas at pressure P, volume V and temperature T is expanded isothermally to volume $4 V$. Thereafter, the gas is heated isochorically (at constant volume) till its pressure becomes P. If R is the universal gas constant, the total heat transfer in the process, in units of $R T$ is \qquad . (Round off 2 decimal places) Ans. : 5.88 to 5.94
Solution: $d Q_{1}=R T \ln \frac{V_{2}}{V_{1}}=R T \ln 4 \quad d U=0$ (isothermally),
$C_{V}=1.5 R$ (Monoatomic Gas)
$d Q_{2}=C_{V} d T=C_{V}(4 T-T)=3 C_{V} T=\frac{9}{2} R T=4.5 R T$
Total $d Q=R T(2 \ln 2+4.5)=5.886$
Q59. In the transistor circuit given in the figure, the emitter-base junction has a voltage drop of $0.7 \mathrm{~V} \cdot \mathrm{~A}$ collector-emitter voltage of 14 V reverse biases the collector. Assuming the collector current to be the same as the emitter current, the value of R_{B} is \qquad $k \Omega$.

Ans. 59: 865

Solution:

$V_{B E}=0.7 \mathrm{~V}, V_{C E}=14 \mathrm{~V}$ and $I_{E} \approx I_{C}$
$\because V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$
$\Rightarrow I_{C}=\frac{V_{C C}-V_{C E}}{R_{C}+R_{E}}=\frac{20 \mathrm{~V}-14 \mathrm{~V}}{2 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=2 \mathrm{~mA} \approx I_{E}$

Apply KVL in input section
$-V_{C C}+\frac{I_{C}}{\beta} R_{B}+V_{B E}+I_{E} R_{E}=0 \Rightarrow-20 V+\frac{2 m A}{100} \times R_{B}+0.7 \mathrm{~V}+2 \mathrm{~mA} \times 1 \mathrm{k} \Omega=0$
$\Rightarrow \frac{2 \mathrm{~mA}}{100} \times R_{B}=17.3 \mathrm{~V} \Rightarrow R_{B}=865 \mathrm{k} \Omega$
Q60. The radioactive nuclei ${ }^{40} \mathrm{~K}$ decay to ${ }^{40} \mathrm{Ar}$ with a half-life of 1.25×10^{9} years. The $\frac{{ }^{40} \mathrm{~K}}{{ }^{40} \mathrm{Ar}}$ isotopic ratio for a particular rock is found to be 50 . The age of the rock is $m \times 10^{7}$ years. The value of m is \qquad . (Round off to 2 decimal places)
Ans. : 3.57
Solution: $\frac{K^{40}}{A^{40}}=\frac{N_{0} e^{-\lambda t}}{N_{0}-N_{0} e^{-\lambda t}}=50 \Rightarrow e^{\lambda t}=\frac{51}{50}=1.02 \Rightarrow \lambda t=\ln (1.02)$
$\Rightarrow t=\frac{1.25 \times 10^{9}}{0.693} \ln (1.02) \Rightarrow t=3.57 \times 10^{7}$ years

Our Star Achievers

NET / JRF AIR - 01
Classroom Course

JEST AIR - 04
Online Live Batch

JRF AIR - 02
Classroom Course

GATE AIR-03
Pre-Recorded Batch

IIT-JAM AIR - 05
Online Live Batch

JEST AIR - 06
Online Live Batch

