NET DECEMBER-2019

PART A

Q1. A two-digit number is such that if the digit 4 is placed to its right, its value would increase by 490 . Find the original number.
(a) 48
(b) 54
(c) 64
(d) 56

Ans.: (b)
Solution: Let the two digit number be $10 x+y$
From the question
$100 x+10 y+4-(10 x+y)=490 \Rightarrow 90 x+9 y=486 \Rightarrow 9(10 x+y)=486$
Therefore, $10 x+y=\frac{486}{9}=54$
Q2. Given that $K!=1 \times 2 \times 3 \times \ldots \times K$, which is the largest among the following numbers?
(a) $(2!)^{1 / 2}$
(b) $(3!)^{1 / 3}$
(c) $(4!)^{1 / 4}$
(d) $\frac{(3!)}{2}$

Ans.: (d)
Solution: $(2!)^{1 / 2}=\left(2^{6}\right)^{1 / 12}=(64)^{1 / 12},(3!)^{1 / 2}=\left(6^{4}\right)^{1 / 12}=(1296)^{1 / 12}$
$(4!)^{1 / 4}=\left(24^{3}\right)^{1 / 12}=(13824)^{1 / 12}, \frac{(3!)}{2}=3=\left(3^{12}\right)^{1 / 12}=(43046721)^{1 / 12}$ Hence $\frac{(3!)}{2}$ is largest
Q3. Of three children, Uma plays all three of cricket, football and hockey. Iqbal plays cricket but not football and Tarun plays hockey but neither football nor cricket. The number of games played by at least two of the children is
(a) One
(b) Two
(c) Three
(d) zero

Ans.: (b)
Solution: From the table we see that cricket is played by two children and Hockey is also played by two children. Football is played by just one student.

	Cricket	Football	Hockey
Uma	\checkmark	\checkmark	\checkmark
Iqbal	\checkmark	X	
Tarun	X	X	\checkmark

Hence number of games played by at least two of the children $=2$

Q4. A multiple choice exam has 4 questions, each with 4 answer choices. Every question has only one correct answer. The probability of getting all answers correct by independent random guesses for each one is
(a) 14
(b) $(1 / 4)^{4}$
(c) $(3 / 4)$
(d) $(3 / 4)^{4}$

Ans.: (b)
Solution:

First question	Second question	Third question	Fourth question
4 ways	4 ways	4 ways	4 ways

Each question can be answered in 4 ways. Hence total number of ways of answering the four questions $=4 \times 4 \times 4 \times 4=4^{4}$
There is only one way of providing the correct answer
Hence, required probability $=1 / 4^{4}$
Q5. The result of a survey to find the most preferred leader among A, B, C is shown in the table

Votes	A	B	C
$1^{\text {st }}$ preference	13	54	33
$2^{\text {nd }}$ preference	24	37	39
$3^{\text {rd }}$ preference	63	9	28

First, second and third preferences are given weights $3,2,1$, respectively. Statistically, which of the following can be said to represent the preferences of the voters?
(a) A and C are within 10% of each other
(b) B is the most preferred
(c) B and C are within 10% of each other
(d) C is the most preferred

Ans: (b)
Solution: Taking into account their respective weights
Number of votes of $A=13 \times 3+24 \times 2+63 \times 1=150$
Number of votes of $B=54+37 \times 2+9 \times 1=245$
Number of votes of $C=33 \times 3+39 \times 2+28 \times 1=205$
Hence we can say that B is most preferred.

Q6. Which is the curve in the figure whose points satisfy the equation $y=$ constant $\times e^{x}$?
(a) A
(b) B
(c) C

(d) D

Ans.: (c)
Solution: The graph of the curve $y=k \times e^{x}$ is shown

Q7. An ice cube of volume $10 \mathrm{~cm}^{3}$ is floating over a glass of water of $10 \mathrm{~cm}^{2}$ cross-section area and 10 cm height. The level of the water is exactly at the brim of the glass. Given that the density of ice is 10% less than that of water, what will be the situation when ice melts completely?
(a) the level falls by 10% of the side of the cube.
(b) The level falls by 10% of the original height of the water column
(c) The level increases by 10% of the side of the cube and water spills out
(d) There is no change in the level of the water.

Ans.: (d)
Solution: Let the density of water be $\rho \omega$ then density of ice $=\frac{9 \rho \omega}{10}$
For floating
Weight of cube = Buoyant force
$\Rightarrow \rho_{i} v_{i} g=\rho_{\omega} v g \Rightarrow \frac{9 \rho \omega}{10}\left(10 \mathrm{~cm}^{3}\right)=\rho_{\omega} v \Rightarrow v=9 \mathrm{~cm}^{3}$
hence $9 \mathrm{~cm}^{3}$ if ice is initially sulomerged in water when ice melts its volume changes from $10 \mathrm{~cm}^{3}$ to $\left(10 \mathrm{~cm}^{3}\right) \times \frac{9}{10}=9 \mathrm{~cm}^{3}$. Thus we see that there is no change in the level of water.

Q8. In a college admission where applicants have to choose only one subject, $1 / 4^{\text {th }}$ of the applicants opted for Biology. $1 / 6^{\text {th }}$ for chemistry, $1 / 8^{\text {th }}$ for Physics and $1 / 12^{\text {th }}$ for Maths. 18 applicants did not opt for any of the above four subjects. How many applicants were there?
(a) 22
(b) 24
(c) 36
(d) 48

Ans.: (d)
Solution: Let here be x applicants
From the question
$x-\left(\frac{x}{4}+\frac{x}{6}+\frac{x}{8}+\frac{x}{12}\right)=18 \Rightarrow x-\frac{15 x}{24}=18 \Rightarrow \frac{9 x}{24}=18 \Rightarrow x=48$
Q9. Based on the bar chart shown here, which of the following inferences is correct?
(a) Region A uses maximum water per kg of rice
(b) Average water consumption of the four regions is
37.5 lakh liters
(c) Region D uses thrice the amount of water used by region A per kg of rice.
(d) Region B uses 20 lakh litres of less water than region A

Ans.: (c)
Solution: Water used for the production of rice per kg in four regions A, B, C and D are $\frac{1}{60}, \frac{1}{40}, \frac{1}{30}$ and $\frac{1}{20}$ respectively

Since $\frac{1}{20}=3 \times \frac{1}{60}$, hence correct option is (c)
Q10. In a race five drivers were in the following situation. M was following V, R was just ahead of T and K was the only one between T and V. Who was in the second place at that instant?
(a) V
(b) R
(c) T
(d) K

Ans.: (c)
Solution: From the statement ' R was just ahead of T ', we have the following situation:

$$
R, T
$$

From the statement ' K was the only one between T and V we ca write

$$
R, T, K, V
$$

From the statement ' M was following R ' we can write

$$
R, T, K, V, M
$$

Hence T was in the second place.
Q11. A bag contains 8 red balls, 17 green balls. What is the minimum number of balls that needs to be taken out from the bag to ensure getting at least one ball of each colour?
(a) 19
(b) 18
(c) 28
(d) 27

Ans.: (c)
Solution: If we draw a red ball then certainly we have drawn at least one ball of each colour.
Hence the minimum number of balls that must be drawn to ensure that at least one ball of each colour is drawn $=17+10+1=28$.

Q12. In a very old, stable forest, a particular species of plants grows to a maximum height of 3 m . In a large survey, it is found that 30% of the plants have heights less than 1 m and 50% have heights more than $2 m$. From these observations we can say that the height of the plants increases
(a) at the slowest rate when they are less than 1 m tall
(b) at the fastest rate when they are between $1 m$ and $2 m$ tall
(c) at the fastest rate when they are more than $2 m$ tall
(d) at the same rate at all stages

Ans.: (b)
Solution: From the question we see that $20+50=70$ percent plants have heights more than in which only 50% plants have height more than 2 m . Hence plants show maximum rate of increase of height when they are between 1 m and 2 m .

Q13. What day of the week will it be 61 days from a Friday?
(a) Saturday
(b) Sunday
(c) Friday
(d) Wednesday

Ans.: (d)
Solution: After a given day every $7^{\text {th }}$ day is the same day.
Now, in 61 days $7 \times 8=56$ th day will be a Friday. Hence 61 th day will be a Wednesday

Q14. Which of the following 7 -digit numbers CANNOT be perfect squares?
$A=45 x y z 26, B=2 x y z 175, C=x y z 3310$
(a) Only A
(b) Only B
(c) Only C
(d) All three

Ans.: (d)
Solution: Only a four digit number when squared can give a 7 -digit number.
Suppose $A=45 x y z 26=(a b c 6)^{2}$
But the second digits of $(a b c 6)^{2}$ is always 1 or 3 or 5 or 7
Suppose $B=2 x y z 175=(x y z 5)^{2}$
But the second last digit of $(x y z 5)^{2}$ is always 2
Suppose $C=x y z 3310=(p q r 0)^{2}$
But the second last digit of $(p q r 0)^{2}$ is always 0
Since all three numbers A, B and C do not satisfy the requirements for a perfect square, none of them is a perfect square. Hence the correct option is (d)
Q15. A cyclist covers a certain distance at a constant speed. If a jogger covers half the distance in double the time as the cyclist, the ratio of the speed of the jogger to that of the cyclist is
(a) $1: 4$
(b) $4: 1$
(c) $1: 2$
(d) $2: 1$

Ans.: (a)
Solution: Let the speed of cyclist be v and the distance covered be d.
Then time taken by cyclist $=\frac{d}{v}$
Speed of Jogger $=\frac{d / 2}{2 d / v}=\frac{v}{4}$
Hence ratio of speed of Jogger to that of cyclist $=\frac{v / 4}{v}=1: 4$
Q16. What is the ratio of the surface area of a cube with side 1 cm to the total surface area of the cubes formed by breaking the original cube into identical cubes of side 1 mm ?
(a) $\frac{1}{6}$
(b) $\frac{1}{10}$
(c) $\frac{1}{100}$
(d) $\frac{1}{36}$

Ans.: (b)
Solution: surface area of cube $6(10 \mathrm{~mm})^{2}=600 \mathrm{~mm}^{2}$

Sum of surface areas of smaller cubes
$6(1 \mathrm{~mm})^{2} \times$ number of smaller cubes
Number of smaller cubes $=\frac{\text { Volume of original cube }}{\text { Volume of smaller cube }}=\frac{(10 \mathrm{~mm})^{3}}{(1 \mathrm{~mm})^{3}}=1000$
Hence, sum of surface areas of smaller cubes $=6000 \mathrm{~mm}^{2}$
Hence, the required ratio $=\frac{600 \mathrm{~mm}^{2}}{6000 \mathrm{~mm}^{2}}=\frac{1}{10}=1: 10$
Q17. How many non-square rectangles are there in the following figure, consisting of 7 squares?
(a) 8
(b) 9
(c) 10
(d) 11

Ans.: (c)
Solution: Number of rectangles having length one unit and width two or three or four units $=7$

Number of rectangles having length three units and width one units $=2$
Number of rectangles having length three units and width one units $=1$
Hence total number of non-square rectangles $=7+2+1=10$
Q18. The mean of a set of 10 numbers is M. By combining with it a second set of M numbers, the mean of the combined set becomes 10 . What is the sum of the second set of numbers?
(a) $10 M-1$
(b) $10 M+1$
(c) 20
(d) 100

Ans.: (d)
Solution: The sum of all numbers in the first set $=10 \times M=10 M$
Te sum of numbers in the combined set $=(10+M) \times 10=100+10 M$
sum of second set of numbers
$=$ sum of numbers in combined set - sum of numbers in first set
$=100+10 M-10 M=100$
Q19. Karan's house is 20 m to the east of Rahul's house. Mehul's house is 25 m to the NorthEast of Rahul's house. With respect to Mehul's house in which direction is Karan's house?
(a) East
(b) South
(c) North-East
(d) West

Ans.: (b)

Solution: Mehul's house is $\frac{25}{\sqrt{2}} m$ to the East of Rahul's house and $\frac{25}{\sqrt{2}} m$ to the north of Rahul's house. Hence with respect to Mehul's house Karan house is in the South-East direction. None of the given options have this answer. So all of them are
 wrong.
Q20. A four-wheeled cart is going around a circular track. Which of the following statements is correct, if the four wheels are free to rotate independent of each other and the cart negotiates the track stably?
(a) All wheels rotate at the same speed
(b) The four wheels have different speeds each
(c) The wheels closer to the inside of the track move slower than the outer-side wheels
(d) The wheels closer to the inside of the track move faster than the outer-side wheels

Ans.: (c)
Solution: We consider that the angular speed of all parts of the car is uniform, call it ω.
Suppose that two types closer to the centre of the track are at a distance of r_{1} from centre. Also suppose that the two types that are farther from the centre of track are at a distance r_{2} from the centre. Clearly $r_{2}>r_{1}$

Speed of wheels cbser to the inside of track $=\omega r_{1}$

Speed of wheels farther away from the track $=\omega r_{2}$
Since $r_{2}>r_{1} \Rightarrow \omega r_{2}>\omega r_{1}$

PART B

Q21. The angular frequency of oscillation of a quantum harmonic oscillator in two dimensions is ω. If it is in contact with an external heat bath at temperature T, its partition function is (in the following $\beta=\frac{1}{k_{B} T}$)
(a) $\frac{e^{2 \beta \hbar \omega}}{\left(e^{2 \beta \hbar \omega}-1\right)^{2}}$
(b) $\frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}}$
(c) $\frac{e^{\beta \hbar \omega}}{e^{\beta \hbar \omega}-1}$
(d) $\frac{e^{2 \beta \hbar \omega}}{e^{2 \beta \hbar \omega}-1}$

Ans.: (b)
Solution: $E_{n}=(n+1) \hbar \omega \quad n=n_{x}+n_{y} \quad$ (2D Harmonic Oscillator)
$z=\sum_{n=0}^{\infty}(n+1) e^{-(n+1) \hbar \omega}$ degeneracy $=(n+1)$
$z=e^{-\hbar \omega}+2 e^{-2 \hbar \omega}+3 e^{-3 \hbar \omega}+\ldots$
$z=\frac{e^{-\beta \hbar \omega}}{1-e^{-\beta \hbar \omega}}+\frac{e^{-\beta 2 \hbar \omega}}{\left(1-e^{-\beta \hbar \omega}\right)^{2}}=\frac{e^{-\beta \hbar \omega}\left(1-e^{-\beta \hbar \omega}\right)+e^{-\beta 2 \hbar \omega}}{\left(1-e^{-\beta \hbar \omega}\right)^{2}}$
$=\frac{e^{-\beta \hbar \omega}-e^{-2 \beta \hbar \omega}+e^{-\beta 2 \hbar \omega}}{\left(1-e^{-\beta \hbar \omega}\right)^{2}}=\frac{e^{-\beta \hbar \omega}}{e^{-2 \beta \hbar \omega}\left(e^{\beta \hbar \omega}-1\right)^{2}}=\frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}}$
Note：$S_{n}=a b+(a+d) b r+(a+2 d) b r^{2}+\ldots$
$S_{\infty}=\frac{a b}{1-r}+\frac{d b r}{(1-r)^{2}}$
Q22．A student measures the displacement x from the equilibrium of a stretched spring and reports it be $100 \mu \mathrm{~m}$ with a 1% error．The spring constant k is known to be $10 \mathrm{~N} / \mathrm{m}$ with 0.5% error．The percentage error in the estimate of the potential energy $V=\frac{1}{2} k x^{2}$ is
（a） 0.8%
（b） 2.5%
（c） 1.5%
（d） 3.0%

Ans．：（b）
Solution：Percentage error in potential energy $V=\frac{1}{2} k x^{2}$

$$
\frac{\Delta V}{V} \%=\frac{\Delta K}{K} \%+\frac{2 \Delta x}{x} \%
$$

$$
\text { Given } \frac{\Delta K}{K} \%=0.5 \% \text { and } \frac{\Delta x}{x} \%=1 \% \quad \therefore \frac{\Delta V}{V} \%=0.5 \%+2 \times 1 \%=2.5 \%
$$

Q23．The Hamiltonian of two interacting particles one with spin 1 and the other with spin $\frac{1}{2}$ is given by $H=A \vec{S}_{1} \cdot \vec{S}_{2}+B\left(S_{1 x}+S_{2 x}\right)$ ，where \vec{S}_{1} and \vec{S}_{2} denote the spin operators of the first and second particles，respectively and A and B are positive constants．The largest eigenvalue of this Hamiltonian is
（a）$\frac{1}{2}\left(A \hbar^{2}+3 B \hbar\right)$
（b） $3 A \hbar^{2}+B \hbar$
（c）$\frac{1}{2}\left(3 A \hbar^{2}+B \hbar\right)$
（d）$A \hbar^{2}+3 B \hbar$

Ans．：（a）
Solution：$H=A \vec{S}_{1} \cdot \vec{S}_{2}+B\left(S_{1 x}+S_{2 x}\right)$
$S_{1}=1 S_{2}=\frac{1}{2} \quad S=\frac{3}{2}, \frac{1}{2}$
$H=A \frac{|S|^{2}-\left|S_{1}\right|^{2}-\left|S_{2}\right|^{2}}{2}+B\left(S_{1 x}+S_{2 x}\right)$
For largest eigen value for $s=\frac{3}{2} \Rightarrow|S|=\frac{3}{2}\left(\frac{3}{2}+1\right) \hbar^{2}=\frac{15}{4} \hbar^{2}$
$\left|S_{1}\right|^{2}=1(1+1) \hbar^{2}=2 \hbar^{2}$
$\left|S_{2}\right|^{2}=\frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2}=\frac{3}{4} \hbar^{2}$
$S_{1 x}=\hbar$
$S_{2 x}=\frac{\hbar}{2}$
$H=A \frac{\frac{15}{4} \hbar^{2}-2 \hbar^{2}-\frac{3}{4} \hbar^{2}}{2}+B\left(\hbar+\frac{\hbar}{2}\right)$
$=A \frac{(15-11) \hbar^{2}}{8}+\frac{3 B \hbar}{2}=A \frac{4}{8} \hbar^{2}+\frac{3 B \hbar}{2}=\frac{1}{2}\left(A \hbar^{2}+3 B \hbar\right)$
Q24. Consider the set of polynomials $\left\{x(t)=a_{0}+a_{1} t+\ldots+a_{n-1} t^{n-1}\right\}$ in t of degree less than n, such that $x(0)=0$ and $x(1)=1$. This set
(a) constitutes a vector space of dimension n
(b) constitutes a vector space of dimension $n-1$
(c) constitutes a vector space of dimension $n-2$
(d) does not constitute a vector space

Ans.: (d)
Solution: $x(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots .+a_{n-1} y^{n-1}$
$x(0)=0$
$0=a_{0}$
$x(t)=a_{1} t+a_{2} t^{2}+\ldots . a_{n-1} t^{n-1}$
also, $x(1)=1$
$1=a_{1}+a_{2}+\ldots+a_{n-1}$
t, t^{2}, t^{3}, \ldots will make basis vector if
$c_{1} t+c_{2} t^{2} c_{3} t^{3}+\ldots .=0$

If $c_{1}=c_{2}=c_{3}=\ldots=0$
Which is contradicting with (i)
So, It does not constitute a vector space. For our case if $a_{1}=a_{2}=\ldots=0$
Its summation can't be $=1$.
Q25. Consider black body radiation in thermal equilibrium contained in a two-dimensional box. The dependence of the energy density on the temperature T is
(a) T^{3}
(b) T
(c) T^{2}
(d) T^{4}

Ans.: (a)
Solution: The energy density at the temperature T is,
Energy density for $2 D$ photon, $u=\frac{2 \zeta(3)\left(k_{B} T\right)^{3}}{\hbar c^{2} \pi}, \zeta(s)=1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\ldots$, Riemann Zeta function $u \propto T^{3}$
Q26. The energy eigenvalues of a particle of mass m, confined to a rigid one-dimensional box of width L, are $E_{n}(n=1,2, \ldots)$. If the walls of the box are moved very slowly toward each other, the rate of change of time-dependent energy $\frac{d E_{2}}{d t}$ of the first excited state is
(a) $\frac{E_{2}}{L} \frac{d L}{d t}$
(b) $\frac{2 E_{2}}{L} \frac{d L}{d t}$
(c) $-\frac{2 E_{2}}{L} \frac{d L}{d t}$
(d) $-\frac{E_{1}}{L} \frac{d L}{d t}$

Ans. : (c)
Solution: $E_{2}=\frac{4 \pi^{2} \hbar^{2}}{2 m L^{2}} \Rightarrow \frac{d E_{2}}{d t}=-2 \frac{4 \pi^{2} \hbar^{2}}{2 m L^{3}} \frac{d L}{d t}=\frac{-2}{L} E_{2} \frac{d L}{d t} \frac{d E_{2}}{d t}=\frac{-2 E_{2}}{L} \frac{d L}{d t}$
Q27. A ball, initially at rest, is dropped from a height h above the floor bounces again and again vertically. If the coefficient of restitution between the ball and the floor is 0.5 , the total distance traveled by the ball before it comes to rest is
(a) $\frac{8 h}{3}$
(b) $\frac{5 h}{3}$
(c) $3 h$
(d) $2 h$

Ans.: (b)
Solution: $v=\sqrt{2 g h}$ and $v_{1}=e \sqrt{2 g h}$

$$
\begin{aligned}
& 0=(e v)^{2}-2 g h_{1} \Rightarrow h_{1}=\frac{e^{2} \times 2 g h}{2 g}=e^{2} h \\
& \text { Similarly, } h_{2}=e^{4} h \\
& H=h+2 h_{1}+2 h_{2}+\ldots \infty=h+2\left(e^{2} h+e^{4} h+\ldots . \infty\right)
\end{aligned}
$$

$$
\begin{aligned}
& =h+2 e^{2} h\left(\frac{1}{1-e^{2}}\right)=h \times\left(\frac{1+e^{2}}{1-e^{2}}\right) \\
& \text { Put } e=\frac{1}{2}=0.5=h \times\left(\frac{1+0.25}{1-0.25}\right)=h \times \frac{125}{75}=\frac{5 h}{3}
\end{aligned}
$$

Q28．Two spin $\frac{1}{2}$ fermions of mass m are confined to move in a one－dimensional infinite potential well of width L ．If the particles are known to be in a spin triplet state，the ground state energy of the system（in units of $\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}$ ）is
（a） 8
（b） 2
（c） 3
（d） 5

Ans．：（d）
Solution：If probability in triplet state means $S_{1 z}=\frac{1}{2}$ and $S_{2 z}=\frac{1}{2}$ ．So one electron in $n=1$ state and another in $n=2$ state．So ground state energy of configuration is

$$
\left(1^{2}+2^{2}\right) \frac{\pi^{2} \hbar^{2}}{2 m L^{2}}=\frac{5 \pi^{2} \hbar^{2}}{2 m L^{2}}
$$

Q29．The figure below shows a 2－bit simultaneous analog－to－digital（A／D）converter operating in the voltage range 0 to V_{0} ．The output of the comparators are C_{1}, C_{2} and C_{3} with the reference inputs $V_{0} / 4, V_{0} / 2$ and $3 V_{0} / 4$ ，respectively．The logic expression for the output corresponding to the less significant bit is
（a）$C_{1} C_{2} C_{3}$
（b）$C_{2} \bar{C}_{3}+\bar{C}_{1}$
（c）$C_{1} \bar{C}_{2}+C_{3}$

（d）$C_{2} \bar{C}_{3}+C_{2}$
Ans．：（c）
Solution：Least significant bit is（0，1）i．e．C_{1} will be selected and $C_{2}=0, C_{3}=0$
So output $=C_{1} \bar{C}_{2}+C_{3}=C_{1} \cdot \overline{0}+0=C_{1}$
Q30．The $y z$－plane at $x=0$ carries a uniform surface charge density σ ．A unit point charge is moved from a point $(\delta, 0,0)$ on one side of the plane to a point $(-\delta, 0,0)$ on the other side．If δ is an infinitesimally small positive number，the work done in moving the charge is
(a) 0
(b) $\frac{\sigma}{\varepsilon_{0}} \delta$
(c) $-\frac{\sigma}{\varepsilon_{0}} \delta$
(d) $\frac{2 \sigma}{\varepsilon_{0}} \delta$

Ans.: (a)
Solution: Work done $q[V(b)-V(a)]$
Since work done depends on potential difference between two points,

$$
\text { So } W=0 \quad \text { (Potential }=\text { constant })
$$

Q31. A circular conducting wire loop is placed close to a solenoid as shown in the figure below. Also shown is the current through the solenoid as a function of time.

The magnitude $|i(t)|$ of the induced current in the wire loop, as a function of time t, is best represented as

(c)

Ans.: (d)
Solution: Induced e.m.f $\varepsilon=-\frac{d \phi}{d t}|l(t)|=\frac{|\varepsilon|}{R} \propto\left|\frac{d l s}{d t}\right|$

Physics by fiziks

So when current increases，$|l(t)|$ will increase and when it will decrease $|l(t)|$ will decrease．

Q32．A mole of gas at initial temperature T_{i} comes into contact with a heat reservoir at temperature T_{f} and the system is allowed to reach equilibrium at constant volume．If the specific heat of the gas is $C_{V}=\alpha T$ ，where α is a constant，the total change in entropy is
（a）zero
（b）$\alpha\left(T_{f}-T_{i}\right)+\frac{\alpha}{2 T_{f}}\left(T_{f}-T_{i}\right)^{2}$
（c）$\alpha\left(T_{f}-T_{i}\right)$
（d）$\alpha\left(T_{f}-T_{i}\right)+\frac{\alpha}{2 T_{f}}\left(T_{f}^{2}-T_{i}^{2}\right)$

Ans．：（d）
Solution：Change in entropy of gas
$T d s=C_{V} d T+P d V, \mathrm{dV}=0$
$T d s=\alpha T d T$
$\Delta s_{g a s}=\alpha\left[T_{f}-T_{i}\right]$

Change in entropy of reservoir（at constant temperature T_{f} ）

$$
\begin{array}{lr}
T_{f} d s=\alpha T d T & d Q=\alpha T d T \\
T_{f} \Delta s_{\text {Res }}=\left.\alpha \frac{T^{2}}{2}\right|_{T_{i}} ^{T_{f}}=\frac{\alpha}{2}\left[T_{f}^{2}-T_{i}^{2}\right] & \\
\Delta S_{\text {Res }}=\frac{\alpha}{2 T_{f}}\left[T_{f}^{2}-T_{i}^{2}\right] \\
\Delta s_{\text {total }}=\alpha\left[T_{f}-T_{i}\right]+\frac{\alpha}{2 T_{f}}\left[T_{f}^{2}-T_{i}^{2}\right]
\end{array}
$$

Q33．An ideal Carnot engine extracts 100 J from a heat source and dumps 40 J to a heat sink at 300 K ．The temperature of the heat source is
（a） 600 K
（b） 700 K
（c） 750 K
（d） 650 K

Ans．：（c）
Solution：$Q_{1}=100 \mathrm{~J}, Q_{2}=40 \mathrm{~J}$
$T_{1}=$ ？$\quad T_{2}=300 \mathrm{~K}$
$\frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}} \Rightarrow \frac{100}{40}=\frac{T_{1}}{300} \Rightarrow T_{1}=\frac{100 \times 300}{40}$
$\Rightarrow T_{1}=750 \mathrm{~K}$

Q34. A block of mass m, attached to a spring, oscillates horizontally on a surface. The coefficient of friction between the block and the surface is μ. Which of the following trajectories best describes the motion of the block in the phase space ($x p_{x}$-plane)?

(a)

(c)

Ans.: (b)
Solution: Due to friction amplitude and momentum of oscillation continuously decreases. So option (b) is correct.

Q35. Let C be the circle of radius $\frac{\pi}{4}$ centered at $z=\frac{1}{4}$ in the complex z-plane that is traversed counter-clockwise. The value of the contour integral $\oint_{C} \frac{z^{2}}{\sin ^{2} 4 z} d z$ is
(a) 0
(b) $\frac{i \pi^{2}}{4}$
(c) $\frac{i \pi^{2}}{16}$
(d) $\frac{i \pi}{4}$

Ans.: (c)

Solution: $f(z)=\left(\frac{\pi}{\sin 4 z}\right)^{2}$

$$
\begin{aligned}
& z_{0}=0, \frac{\pi}{4} \text { are poles } \\
& 4 z=n \pi, z=0, \frac{\pi}{4}
\end{aligned}
$$

Others are outside the contour.

$$
\begin{aligned}
& =\left[\frac{1}{4-\frac{4^{3} z^{2}}{3!}+\ldots .}\right]^{2} \text { No terms for } \frac{1}{z}, b_{1}=0 \\
& =\left[4-\frac{4^{3} z^{2}}{3!}+\ldots \cdot\right]^{-2}
\end{aligned}
$$

Residue for $z=\frac{\pi}{4}$

$$
\begin{aligned}
& z-\frac{\pi}{4}=t \\
& \sin (4 t+\pi)=-\sin 4 t \quad \text { (But square so no effect) }
\end{aligned}
$$

$$
\left[\frac{t+\frac{\pi}{4}}{\sin 4\left(t+\frac{\pi}{4}\right)}\right]^{2}
$$

$$
\left(\frac{t+\frac{\pi}{4}}{\sin 4 t}\right)^{2}=\frac{t^{2}+\frac{\pi^{2}}{4}+2 t \cdot \frac{\pi}{4}}{\sin ^{2} 4 t}
$$

$$
\frac{\pi}{2} \frac{t}{16 t^{2}[1-\ldots . .]^{2}}=\frac{\pi}{32 t}[1-\ldots .]^{-2}(\text { from first term })
$$

$$
b_{1}=\frac{\pi}{32}
$$

$$
\oint_{C} \frac{z^{2}}{\sin ^{2} 4 z} d z=2 \pi i\left[0+\frac{\pi}{32}\right]=\frac{i \pi^{2}}{16}
$$

Q36. If the rank of an $n \times n$ matrix A is m, where m and n are positive integers with $1 \leq m \leq n$, then the rank of the matrix A^{2} is
(a) m
(b) $m-1$
(c) $2 m$
(d) $m-2$

Ans.: (a)
Solution: Let $\sigma_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]_{\substack{2 \times 2 \\ n=2}}=A \quad m=2$
$1 \leq 2 \leq 2 \quad 1 \leq m \leq n$
$A^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]_{2 \times 2} m=2$
(b), (c), (d) can't be correct so option (a) is correct.

Q37. A particle of mass m is confined to a box of unit length in one dimension. It is described by the wavefunction $\psi(x)=\sqrt{\frac{8}{5}} \sin \pi x(1+\cos \pi x)$ for $0 \leq x \leq 1$ and zero outside this interval. The expectation value of energy in this state is
(a) $\frac{4 \pi^{2}}{3 m} \hbar^{2}$
(b) $\frac{4 \pi^{2}}{5 m} \hbar^{2}$
(c) $\frac{2 \pi^{2}}{5 m} \hbar^{2}$
(d) $\frac{8 \pi^{2}}{5 m} \hbar^{2}$

Ans.: (b)
Solution: $\sqrt{\frac{8}{5}} \sin \pi x(1+\cos \pi x)$

$$
\begin{aligned}
& \sqrt{\frac{8}{5}} \sin \pi x+\sqrt{\frac{8}{5}} \sin \pi x \cos \pi x \\
& \sqrt{\frac{8}{5}} \frac{1}{\sqrt{2}} \sqrt{\frac{2}{1}} \sin \pi x+\sqrt{\frac{8}{5}} \times \frac{1}{2} \times \frac{1}{\sqrt{2}} \sqrt{\frac{2}{1}} \sin 2 \pi x \\
& \sqrt{\frac{4}{5}}\left|\phi_{1}\right\rangle+\sqrt{\frac{1}{5}}\left|\phi_{2}\right\rangle
\end{aligned}
$$

$\langle E\rangle=\frac{4}{5} \times E_{0}+\frac{1}{5} \times 4 E_{0}=2 \times \frac{4}{5} E_{0}=\frac{4 \pi^{2} \hbar^{2}}{5 m}$ where $E_{0}=\frac{\pi^{2} \hbar^{2}}{2 m}$

Q38. In the circuit below, D is an ideal diode, the source voltage $V_{S}=V_{0} \sin \omega t$ is a unit amplitude sine wave and $R_{S}=R_{L}$

The average output voltage, V_{L}, across the load resistor R_{L} is
(a) $\frac{1}{2 \pi} V_{0}$
(b) $\frac{3}{2 \pi} V_{0}$
(c) $3 V_{0}$
(d) V_{0}

Ans.: (a)
Solution: Positive half cycle $V_{L}=V_{S}=V_{0} \sin \omega t$
Negative half cycle $V_{L}=\frac{V_{S}}{2}=\frac{V_{0}}{2} \sin \omega t$
$V_{a v}=\frac{1}{2 \pi}\left[\int_{0}^{\pi} V_{0} \sin \theta d \theta+\int_{\pi}^{2 \pi} \frac{V_{0}}{2} \sin \theta d \theta\right]=\frac{1}{2 \pi} V_{0}$

Q39. The normalized wavefunction of a particle in three dimensions is given by

$$
\psi(x, y, z)=N z \exp \left[-a\left(x^{2}+y^{2}+z^{2}\right)\right]
$$

where a is a positive constant and N is a normalization constant. If L is the angular momentum operator, the eigenvalues of L^{2} and L_{z}, respectively, are
(a) $2 \hbar^{2}$ and \hbar
(b) \hbar^{2} and 0
(c) $2 \hbar^{2}$ and 0
(d) $\frac{3}{4} \hbar^{2}$ and $\frac{1}{2} \hbar$

Ans.: (c)

Solution: $\psi(x, y, z)=N z \exp \left[-a\left(x^{2}+y^{2}+z^{2}\right)\right]$

$$
\begin{aligned}
& \psi(r, \theta, \phi)=N r \cos \theta \exp (-r)^{2} \text { so } m=0, l=1 \\
& L^{2}=2 \hbar^{2} \text { and } L_{z}=0 \hbar
\end{aligned}
$$

Q40. The electric field of an electromagnetic wave is $\vec{E}=\hat{i} \sqrt{2} \sin (k z-\omega t) V m^{-1}$. The average flow of energy per unit area per unit time, due to this wave, is
(a) $27 \times 10^{4} \mathrm{~W} / \mathrm{m}^{2}$
(b) $27 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$
(c) $27 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}$
(d) $27 \times 10^{2} \mathrm{~W} / \mathrm{m}^{2}$

Ans.: (b)
Solution: $\langle\vec{S}\rangle=\frac{E / t}{A}=I=\frac{1}{2} \in_{0} E_{0}^{2} c$

$$
\begin{aligned}
& \Rightarrow I=\frac{1}{2} \times 8.86 \times 10^{-12}(\sqrt{2})^{2} \times 3 \times 10^{8} \\
& \Rightarrow I \approx 27 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

Q41. The energies available to a three state system are $0, E$ and $2 E$, where $E>0$. Which of the following graphs best represents the temperature dependence of the specific heat?
(a)

(c)
(b)

(d)

Ans.: (d)

Q42. The values of a and b for which the force $F=\left(a x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+b x z^{2} \hat{k}$ is conservative are
(a) $a=2, b=3$
(b) $a=1, b=3$
(c) $a=2, b=6$
(d) $a=3, b=2$

Ans.: (a)

Physics by fiziks

Solution: For conservative force $\vec{\nabla} \times \vec{F}=0 \Rightarrow\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a x y+z^{3} & x^{2} & b x z^{2}\end{array}\right|=0$

$$
\Rightarrow \hat{x}(0-0)-\hat{y}\left(b z^{2}-3 z^{2}\right)+\hat{z}(2 x-a x)=0
$$

$$
\Rightarrow b-3=0 \text { and } z-a=0 \text { or } a=2, b=3
$$

Q43. A positively charged particle is placed at the origin (with zero initial velocity) in the presence of a constant electric and a constant magnetic field along the positive z and x-directions, respectively. At large times, the overall motion of the particle is adrift along the
(a) positive y-direction
(b) negative z - direction
(c) positive z - direction
(d) negative y-direction

Ans.: (a)
Solution: Initially charged particle will experience

electric force and will gain velocity then it will deflect in magnetic field $[\vec{F} \propto(\vec{v} \times B) \rightarrow \hat{y}]$.

Q44. A box contains 5 white and 4 black balls. Two balls are picked together at random from the box. What is the probability that these two balls are of different colours?
(a) $\frac{1}{2}$
(b) $\frac{5}{18}$
(c) $\frac{1}{3}$
(d) $\frac{5}{9}$

Ans.: (d)
Solution: Probability that the two balls are of different colors

$$
\begin{aligned}
& 5 W, 4 B \\
& =\frac{5 C_{1} \times 4 C_{1}}{9 C_{2}}=\frac{\frac{5!}{4!\times 1!} \times \frac{4!}{3!\times 1!}}{\frac{9!}{7!\times 2!}}=\frac{5 \times 4}{\frac{9 \times 8}{2}}=\frac{5}{9}
\end{aligned}
$$

Q45. Which of the following terms, when added to the Lagrangian $L(x, y, \dot{x}, \dot{y})$ of a system with two degrees of freedom will not change the equations of motion?
(a) $x \ddot{x}-y \ddot{y}$
(b) $x \ddot{y}-y \ddot{x}$
(c) $x \dot{y}-y \dot{x}$
(d) $y \dot{x}^{2}+x \dot{y}^{2}$
(check question)

Ans.: (b)
Solution: $L(x, y, \dot{x}, \dot{y})$

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0, \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{y}}\right)-\frac{\partial L}{\partial y}=0 \\
& L^{\prime}=L(x, y, \dot{x}, \dot{y})+x \ddot{y}-y \ddot{x} \\
& \frac{d^{\prime}}{d t^{\prime}}\left(\frac{\partial L^{\prime}}{\partial \dot{x}}\right)-\frac{\partial L^{\prime}}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}+\ddot{y}=0=0+\ddot{y}=0 \Rightarrow \dot{y}=c_{1} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial y}\right)-\frac{\partial L^{\prime}}{\partial y}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{y}}\right)-\frac{\partial L}{\partial y}+\ddot{x}=0=0-\ddot{x}=0 \Rightarrow \dot{x}=c_{2}
\end{aligned}
$$

PART C

Q46. The outermost shell of an atom of an element is $3 d^{3}$. The spectral symbol for the ground state is
(a) ${ }^{4} F_{3 / 2}$
(b) ${ }^{4} F_{9 / 2}$
(c) ${ }^{4} D_{7 / 2}$
(d) ${ }^{4} D_{1 / 2}$

Ans. : (a)
Solution: For $d^{3}: \quad M_{L}=-2-10+1+2$
Highest $S=\sum M_{S}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}$
Highest $L=\left|\sum M_{L}\right|=|-2-1+0|=3$
Lowest $J=|L-S|=\left|3-\frac{3}{2}\right|=\frac{3}{2}$
Spectral term $={ }^{2 S+1} L_{J}={ }^{4} F_{3 / 2}$
Thus correct option is (a)
Q47. In a spectrum resulting from Raman scattering, let I_{R} denote the intensity of Rayleigh scattering and I_{S} and $I_{A S}$ denote the most intense Stokes line and the most intense anti-
Stokes line, respectively. The correct order of these intensities is
(a) $I_{S}>I_{R}>I_{A S}$
(b) $I_{R}>I_{S}>I_{A S}$
(c) $I_{A S}>I_{R}>I_{S}$
(d) $I_{R}>I_{A S}>I_{S}$

Ans. : (b)

Physics by fiziks

Solution：Intensity of Rayleigh line is always higher than intensity of stokes and Anti－ stokes line．Whereas the intensity of stokes－line is lighter than anti－stokes line

Thus $I_{R}>I_{S}>I_{A S}$
Q48．A particle hops randomly from a site to its nearest neighbour in each step on a square lattice of unit lattice constant．The
 probability of hopping to the positive x－direction is 0.3 ，to the negative x－direction is 0.2 ，to the positive y－direction is 0.2 and to the negative y－direction is 0.3 ．If a particle starts from the origin，its mean position after N steps is
（a）$\frac{1}{10} N(-\hat{i}+\hat{j})$
（b）$\frac{1}{10} N(\hat{i}-\hat{j})$
（c）$N(0.3 \hat{i}-0.2 \hat{j})$
（d）$N(0.2 \hat{i}-0.3 \hat{j})$

Ans．：（b）
Solution：$\left\langle r_{i}\right\rangle \sum_{i} p_{i} r_{i}$
$=0.3 \hat{i}-0.2 \hat{i}+0.2 j-0.3 \hat{j}=0.1 \hat{i}-0.1 \hat{j}$
For N steps，$=\frac{N}{10}[\hat{i}-\hat{j}]$
Q49．Let \hat{x} and \hat{p} denote position and momentum operators obeying the commutation relation $[\hat{x}, \hat{p}]=i \hbar$ ．If $|x\rangle$ denotes an eigenstate of \hat{x} corresponding to the eigenvalue x ， then $e^{i a \hat{p} / \hbar}|x\rangle$ is
（a）an eigenstate of \hat{x} corresponding to the eigenvalue x
（b）an eigenstate of \hat{x} corresponding to the eigenvalue $(x+a)$
（c）an eigenstate of \hat{x} corresponding to the eigenvalue $(x-a)$
（d）not an eigenstate of \hat{x}
Ans．：（c）
Solution：$e^{\frac{i a P}{\hbar}}|x\rangle$

$$
\begin{aligned}
& =\left[\sum_{n=0}^{\infty} \frac{1}{\underline{n}}\left(\frac{i a P}{\hbar}\right)^{n}\right]|x\rangle=\left[\sum_{n=0}^{\infty} \frac{1}{\underline{n}}(-a \nabla)^{n}\right]^{h}|x\rangle \\
& =|x\rangle-a \vec{\nabla}|x\rangle+\frac{1}{\underline{2}}(a \vec{\nabla})^{2}|x\rangle \ldots . .=|x-a\rangle \\
& X|x-a\rangle=(x-a)|x-a\rangle
\end{aligned}
$$

Physics by fiziks

Q50. The strong nuclear force between a neutron and a proton in a zero orbital angular momentum state is denoted by $F_{n p}(r)$, where r is the separation between them. Similarly, $F_{n n}(r)$ and $F_{p p}(r)$ denote the forces between a pair of neutrons and protons, respectively, in zero orbital momentum state. Which of the following is true on average if the inter-nucleon distance is $0.2 \mathrm{fm}<r<2 \mathrm{fm}$?
(a) $F_{n p}$ is attractive for triplet spin state, and $F_{n n}, F_{p p}$ are always repulsive
(b) $F_{n n}$ and $F_{n p}$ are always attractive and $F_{p p}$ is repulsive in the triplet spin state
(c) $F_{p p}$ and $F_{n p}$ are always attractive and $F_{n n}$ is always repulsive
(d) All three forces are always attractive

Ans. : (b)
Solution: Inside the nucleus the interaction between neutron neutron and newtran-proton is always attractive due to nuclear force whereas between proton-proton it is repulusive due to coulombic interaction:

Thus $F_{n n}$ and $F_{n p}$ are always attractive and $F_{p p}$ is repulsive
Q51. The Hall coefficient for a semiconductor having both types of carriers is given as

$$
R_{H}=\frac{p \mu_{p}^{2}-n \mu_{n}^{2}}{|e|\left(p \mu_{p}+n \mu_{n}\right)^{2}}
$$

where p and n are the carrier densities of the holes and electrons, μ_{p} and μ_{n} are their respective mobilities. For a p-type semiconductor in which the mobility of holes is less than that of electrons, which of the following graphs best describes the variation of the Hall coefficient with temperature?
(a)

(b)

(c)

(d)

Ans. : (d)
Solution: Case I: At low temperature: $p \gg n, \mu_{p}<\mu_{n}$
$\Rightarrow p \mu_{p}^{2}>n \mu_{n}^{2} \Rightarrow p \mu_{p}^{2}-n \mu_{n}^{2}>0$
$\Rightarrow R_{H}=$ Positive
Case II: At moderate temperature $\frac{p}{n}>1$
$\Rightarrow p \mu_{p}^{2} \approx n \mu_{n}^{2}$
(since $\mu_{p}<\mu_{n}$)
$\therefore R_{H} \simeq 0$
Case III: At high temperature $\frac{p}{n} \approx 1$
$\Rightarrow p \mu_{p}^{2}-n \mu_{n}^{2}<0 \quad\left(\right.$ since $\left.\mu_{p}<\mu_{p}\right)$
$\therefore R_{H}<0$
Thus graph (d) correctly repeated the variation of R_{H} with respect to temperature
Q52. The generator of the infinitesimal canonical transformation $q \rightarrow q^{\prime}=(1+\in) q$ and $p \rightarrow p^{\prime}=(1-\epsilon) p$ is
(a) $q+p$
(b) $q p$
(c) $\frac{1}{2}\left(q^{2}-p^{2}\right)$
(d) $\frac{1}{2}\left(q^{2}+p^{2}\right)$

Ans.: (b)
Solution: $q \rightarrow q^{\prime}=(1+\epsilon) q$

$$
p \rightarrow p^{\prime}=(1-\in) p
$$

If G is generator then $\quad p^{\prime}-p=\delta p_{j}=-\in \frac{\partial G}{\partial q_{j}} \Rightarrow p^{\prime}-p=-\in p$

$$
q^{\prime}-q=\delta q_{i}=\in \frac{\partial G}{\partial p_{j}} \Rightarrow q^{\prime}-q=\in p
$$

We must check all options but if $G=q p$

$$
\begin{aligned}
& -\epsilon \frac{\partial G}{\partial q}=-\epsilon p=\delta p \\
& \in \frac{\partial G}{\partial p}=\in q=\delta q
\end{aligned}
$$

Q53．Assume that the noise spectral density，at any given frequency，in a current amplifier is independent of frequency．The bandwidth of measurement is changed from 1 Hz to 10 Hz ．The ratio A / B of the RMS noise current before (A) and after (B) the bandwidth modification is
（a） $1 / 10$
（b） $1 / \sqrt{10}$
（c）$\sqrt{10}$
（d） 10

Ans．：（b）
Q54．Let the normalized eigenstates of the Hamiltonian $H=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ be $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ and $\left|\psi_{3}\right\rangle$ ．The expectation value $\langle H\rangle$ and the variance of H in the state $|\psi\rangle=\frac{1}{\sqrt{3}}\left(\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle-i\left|\psi_{3}\right\rangle\right)$ are
（a）$\frac{4}{3}$ and $\frac{1}{3}$
（b）$\frac{4}{3}$ and $\frac{2}{3}$
（c） 2 and $\frac{2}{3}$
（d） 2 and 1

Ans．：（c）
Solution：$H=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$
Eigenvalue $=\left|\begin{array}{ccc}2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ 0 & 0 & 2-\lambda\end{array}\right|=0$

$$
(2-\lambda)\left((2-\lambda)^{2}-1\right)=0
$$

$(\lambda-2)[(2-\lambda-1)(2-\lambda+1)]=0$
$\lambda_{1}=2, \lambda_{2}=1, \lambda_{3}=3$
$E_{1}=2, E_{2}=1, E_{3}=3$
$|\psi\rangle=\frac{1}{\sqrt{3}}\left(\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle-i\left|\psi_{3}\right\rangle\right)$

Hence coefficient $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ and $\left|\psi_{3}\right\rangle$ in $|\psi\rangle$ are same so this is not any need to find eigenstate.

$$
\begin{aligned}
& P(E=2)=\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=\frac{1}{3}, \quad P(E=1)=\frac{1}{3}, \quad P=(E=3)=\frac{1}{3} \\
& \langle H\rangle=2 \times \frac{1}{3}+1 \times \frac{1}{3}+3 \times \frac{1}{3}=\frac{2+1+3}{3}=2 \\
& \left\langle H^{2}\right\rangle=2^{2} \times \frac{1}{3}+1^{2} \times \frac{1}{3}+3^{2} \times \frac{1}{3}=2^{2} \times \frac{1}{3}+1^{2} \times \frac{1}{3}+9^{2} \times \frac{1}{3}=\frac{4+1+9}{3}=\frac{14}{3} \\
& (\Delta E)^{2}=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=\frac{14}{3}-(2)^{2}=\frac{14-12}{3}=\frac{2}{3}
\end{aligned}
$$

Q55. For a crystal, let ϕ denote the energy required to create a pair of vacancy and interstitial defects. If n pairs of such defects are formed, and $n \ll N, N^{\prime}$, where N and N^{\prime} are respectively, the total number of lattice and interstitial sites, then n is approximately
(a) $\sqrt{N N^{\prime}} e^{-\phi /\left(2 k_{B} T\right)}$
(b) $\sqrt{N N^{\prime}} e^{-\phi\left(k_{B} T\right)}$
(c) $\frac{1}{2}\left(N+N^{\prime}\right) e^{-\phi\left(2 k_{B} T\right)}$
(d) $\frac{1}{2}\left(N+N^{\prime}\right) e^{-\phi\left(k_{B} T\right)}$

Ans. : (a)
Solution: Thermodynamic probability of such Frienbed defects is
$W=\frac{N!}{(N-n)!n!} \frac{N^{\prime}!}{\left(N^{\prime}-n\right)!n!}$
change in entropy is
$\Delta s=k \ln w=k \ln \left[\frac{N!}{(N-n)!n!} \cdot \frac{N^{\prime}!}{\left(N^{\prime}-n\right) n!}\right]$
$\Delta s=k \ln \left[N \ln N+N^{\prime} \ln N^{\prime}-(N-n) \ln (N-n)-\left(N^{\prime}-n\right) \ln \left(N^{\prime}-n\right)-2 n \ln n\right]$
change in free energy in creating n Frenkel defects
$\Delta G=n \phi-T \Delta s$
$\Rightarrow \Delta G=n \phi-T\left\{k \ln \left[N \ln N+N^{\prime} \ln N^{\prime}-(N-n)-\left(N^{\prime}-n\right) \ln \left(N^{\prime}-n\right)-2 n \ln n\right]\right\}$
since $\frac{\partial(\Delta G)}{\partial n}=0$
$\Rightarrow \frac{\partial(\Delta G)}{\partial n}=\phi-k T[0+0+\ln (N-n)+1-2 \ln n-2]$
$\Rightarrow \phi-k T \ln \left[\frac{N-n\left(N^{\prime}-n\right)}{n^{2}}\right]=0$
since $n \ll N, N^{\prime} \quad \Rightarrow N-n \cong N$ and $N^{\prime}-n \cong N^{\prime}$
$\therefore \phi-k T \ln \left(\frac{N N^{\prime}}{n^{2}}\right)=0 \quad \Rightarrow \phi-k T \ln \left[\frac{\sqrt{N N^{\prime}}}{n}\right]^{2}=0$
$\Rightarrow \ln \left[\frac{\sqrt{N N^{\prime}}}{n}\right]=\frac{\phi}{2 k T} \Rightarrow n=\sqrt{N N^{\prime}} e^{-\frac{\phi}{2 k T}}$
Q56. In the circuit diagram of a band pass filter shown below, $R=10 \mathrm{k} \Omega$.

In order to get a lower cut-off frequency of 150 Hz and an upper cut-off frequency of 10 kHz , the appropriate values of C_{1} and C_{2} respectively are
(a) $0.1 \mu \mathrm{~F}$ and $1.5 n F$
(b) $0.3 \mu \mathrm{~F}$ and $5.0 n \mathrm{~F}$
(c) $1.5 n F$ and $0.1 \mu F$
(d) 5.0 nF and $0.3 \mu \mathrm{~F}$

Ans.: (a)
Solution: Lower cut -off frequency of H.P.F $=\frac{1}{2 \pi R C_{1}}=10 \mathrm{~Hz}$
$\Rightarrow C_{1}=\frac{1}{2 \pi \times 10 \times 10^{3} \times 10} \approx 0.1 \mu \mathrm{~F}$
Higher cut-off frequency of L.P.F $=\frac{1}{2 \pi R C_{2}}=10 \times 10^{3} \mathrm{~Hz}$
$\Rightarrow C_{2}=\frac{1}{2 \pi \times 10 \times 10^{3} \times 10^{4}} \approx 1.5 \mathrm{nF}$
Q57. The Bethe-Weizsacker formula for the binding energy (in MeV) of a nucleus of atomic number Z and mass number A is

$$
15.8 A-18.3 A^{2 / 3}-0.714 \frac{Z(Z-1)}{A^{1 / 3}}-23.2 \frac{(A-2 Z)^{2}}{A}
$$

The ratio Z / A for the most stable isobar of a $A=64$ nucleus, is nearest to
(a) 0.30
(b) 0.35
(c) 0.45
(d) 0.50

Ans. : (c)
Solution: $Z_{0}=\frac{A}{2+\frac{a_{c}}{2 a_{a}} A^{2 / 3}} \Rightarrow \frac{Z_{0}}{A}=\frac{1}{2+\frac{a_{c}}{2 a_{a}} A^{2 / 3}}$
given $a_{c}=0.714$ and $a_{a}=23.2$
$\therefore \frac{Z_{0}}{A}=\frac{1}{2+\frac{0.714}{2 \times 23.2} A^{2 / 3}}=\frac{1}{2+0.015 A^{2 / 3}}=\frac{1}{2+0.015(64)^{2 / 3}}=0.45$
Thus correct option is (c)

Q58. The phase difference between two small oscillating electric dipoles, separated by a distance d, is π. If the wavelength of the radiation is λ, the condition for constructive interference between the two dipolar radiations at a point P when $r \gg d$ (symbols are as shown in the figure and n is an integer) is

(a) $d \sin \theta=\left(n+\frac{1}{2}\right) \lambda$
(b) $d \sin \theta=n \lambda$
(c) $d \cos \theta=n \lambda$
(d) $d \cos \theta=\left(n+\frac{1}{2}\right) \lambda$

Ans.: (a)
Solution: Since dipole are in opposite direction, initial phase change will be π.

$$
\text { Thus, } \quad(\Delta \phi+\pi)=\frac{2 \pi}{\lambda} \quad \text { (path } \quad \text { difference) }
$$

$=\frac{2 \pi}{\lambda}(d \sin \theta)$
$\Rightarrow 2 n \pi+\pi=\frac{2 \pi}{\lambda} d \sin \theta \Rightarrow d \sin \theta=\left(n+\frac{1}{2}\right) \lambda \quad(n=0,1,2, \ldots$.

$$
r_{1}=r+\frac{d}{2} \sin \theta, r_{2}=r-\frac{d}{2} \sin \theta
$$

Q59. The Hamiltonian of two particles, each of mass m, is
$H\left(q_{1}, p_{1} ; q_{2}, p_{2}\right)=\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 m}+k\left(q_{1}^{2}+q_{2}^{2}+\frac{1}{4} q_{1} q_{2}\right)$, where $k>0$ is a constant. The value of the partition function

$$
Z(\beta)=\int_{-\infty}^{\infty} d q_{1} \int_{-\infty}^{\infty} d p_{1} \int_{-\infty}^{\infty} d q_{2} \int_{-\infty}^{\infty} d p_{2} e^{-\beta H\left(q_{1}, p_{1} ; q_{2}, p_{2}\right)} \text { is }
$$

(a) $\frac{2 m \pi^{2}}{k \beta^{2}} \sqrt{\frac{16}{15}}$
(b) $\frac{2 m \pi^{2}}{k \beta^{2}} \sqrt{\frac{15}{16}}$
(c) $\frac{2 m \pi^{2}}{k \beta^{2}} \sqrt{\frac{63}{64}}$
(d) $\frac{2 m \pi^{2}}{k \beta^{2}} \sqrt{\frac{64}{63}}$

Ans.: (d)
Solution: $Z(\beta)=\int_{-\infty}^{\infty} d q_{1} \int_{-\infty}^{\infty} d p_{1} \int_{-\infty}^{\infty} d q_{2} \int_{-\infty}^{\infty} d p_{2} e^{-\beta H\left(q_{1}, p_{1} ; q_{2}, p_{2}\right)}$

$$
\begin{aligned}
& z(\beta)=\int_{-\infty}^{\infty} e^{-\beta \frac{p_{1}^{2}}{2 m}} d p_{1} \int_{-\infty}^{\infty} e^{-\beta \frac{p_{2}^{2}}{2 m}} d p_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\beta k\left(\frac{\left.q_{1}^{2}+q_{2}^{2}+\frac{q_{1} q_{2}}{4}\right)}{4} d q_{1} d q_{2}\right.} \\
& =\sqrt{\frac{\pi}{\beta / 2 m}} \sqrt{\frac{\pi}{\beta / 2 m}}(,,)=\frac{2 \pi m}{\beta} \cdot 2 \cdot \frac{\pi}{\beta k} \sqrt{\frac{16}{63}}=\frac{2 m \pi^{2}}{k \beta^{2}} \sqrt{\frac{64}{63}}
\end{aligned}
$$

Calculation of (,,

$$
\begin{aligned}
& q_{1}=u+v, q_{2}=u-v, u=\frac{q_{1}+q_{2}}{2} \quad v=\frac{q_{1}-q_{2}}{2} \\
& q_{1}^{2}+q_{2}^{2}+\frac{q_{1} q_{2}}{4}=u^{2}+v^{2}+2 u v+u^{2}+v^{2}-2 u v+\frac{u^{2}-v^{2}}{4} \\
& =2\left[u^{2}+v^{2}\right]+\frac{u^{2}-v^{2}}{4}=\frac{8 u^{2}+8 v^{2}+u^{2}-v^{2}}{4}=\frac{9 u^{2}+7 v^{2}}{4} \\
& \text { (4) } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\beta k\left(q_{1}^{2}+q_{2}^{2}+\frac{q_{1} q_{2}}{4}\right)} d q_{1} d q_{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} J(u, v) e^{\frac{-\beta k}{4}\left(9 u^{2}+7 v^{2}\right)} d u d v
\end{aligned}
$$

$$
J(u, v)=\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|=2, \quad \text { So },=2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-9 \beta \frac{k}{4} u^{2}} e^{-7 \beta \frac{k}{4} v^{2}} d u d v
$$

$$
=2 \cdot \sqrt{\frac{\pi 4}{9 \beta k}} \sqrt{\frac{\pi 4}{7 \beta k}}=2 \cdot \frac{\pi}{\beta k} \cdot \sqrt{\frac{16}{63}}=\frac{\pi}{\beta k} \sqrt{\frac{64}{63}}
$$

Q60. In the AC Josephson effect, a supercurrent flows across two superconductors separated by a thin insulating layer and kept at an electric potential difference ΔV. The angular frequency of the resultant supercurrent is given by
(a) $\frac{2 e \Delta V}{\hbar}$
(b) $\frac{e \Delta V}{\hbar}$
(c) $\frac{e \Delta V}{\pi \hbar}$
(d) $\frac{e \Delta V}{2 \pi \hbar}$

Ans. : (a)
Solution: Current density through thin insulating layer is
$J=J_{0} \sin \left[\delta(0)-\frac{2 \rho \Delta v}{\hbar} t\right]=J_{0} \sin [\delta(0)-\omega t]$
the angular frequency of the super current is $\therefore \omega=\frac{2 \rho \Delta v}{\hbar}$

Thus correct option is (a)

Q61. A negative muon, which has a mass nearly 200 times that of an electron, replaces an electron in a Li atom. The lowest ionization energy for the muonic Li atom is approximately
(a) the same as that of He
(b) the same as that of normal $L i$
(c) 200 times larger than that of normal Li
(d) the same as that of normal Be

Ans. : (a)
Solution: Ionization energy

$$
I=\frac{R_{C} R_{\infty}}{n^{2}}(Z-S)^{2}\left(\frac{m^{\prime}}{m_{e}}\right) \Rightarrow I=A\left(\frac{m^{\prime}}{m_{e}}\right)
$$

For Normal Li-atom

$$
\begin{aligned}
& m^{\prime}=\frac{7 m_{p} \times m_{e}}{7 m_{p}+m_{e}} \Rightarrow \frac{m^{\prime}}{m_{e}}=\frac{7 \times 1836}{7 \times 1836} \cong 1 \\
& \therefore I_{L i}=A
\end{aligned}
$$

For Muonic Li-atom
$m^{\prime}=\frac{7 m_{p} \times m_{\mu^{-}}}{7 m_{p} \times m_{\mu^{-}}} \cong \frac{7 \times 1836 \times 200 m_{e}^{2}}{(7 \times 1836+200) m_{e}}=197 m_{e}$
$\therefore I_{L i}^{\mu}=197 A=197 I_{L i}$
Thus correct option is (c)
Note: Answer does not match

Q62. The wavefunction of a particle of mass m, constrained to move on a circle of unit radius centered at the origin in the $x y$-plane, is described by $\psi(\phi)=A \cos ^{2} \phi$, where ϕ is the azimuthal angle. All the possible outcomes of measurements of the z - component of the angular momentum L_{z} in this state, in units of \hbar are
(a) ± 1 and 0
(b) ± 1
(c) ± 2
(d) ± 2 and 0

Ans.: (d)
Solution: $\psi(\phi)=A \cos ^{2} \phi=\frac{A}{2}(\cos 2 \phi+1)$

$$
\begin{aligned}
& =\frac{A}{2}\left(\frac{e^{2 i \phi}+e^{-2 i \phi}}{2}+e^{0 i \phi}\right) \\
& m=2,-2,0
\end{aligned}
$$

Q63. An alternating current $I(t)=I_{0} \cos (\omega t)$ flows through a circular wire loop of radius R, lying in the $x y$-plane, and centered at the origin. The electric field $\vec{E}(\vec{r}, t)$ and the magnetic field $\vec{B}(\vec{r}, t)$ are measured at a point \vec{r} such that $r \gg \frac{c}{\omega} \gg R$, where $\vec{r}=|\vec{r}|$. Which one of the following statements is correct?
(a) The time-averaged $|\vec{E}(\vec{r}, t)| \propto \frac{1}{r^{2}}$
(b) The time-averaged $|\vec{E}(\vec{r}, t)| \propto \omega^{2}$
(c) The time-averaged $|\vec{B}(\vec{r}, t)|$ as a function of the polar angle θ has a minimum at $\theta=\frac{\pi}{2}$
(d) $\vec{B}(\vec{r}, t)$ is along the azimuthal direction

Ans.: (b)
Solution: We know that $\langle\vec{S}\rangle \propto \omega^{4}$ and $|\vec{E}| \propto \omega^{2},|\vec{B}| \propto \omega^{2}$
Q64. The positive zero of the polynomial $f(x)=x^{2}-4$ is determined using Newton-Raphson method, using initial guess $x=1$. Let the estimate, after two iterations, be $x^{(2)}$. The percentage error $\left|\frac{x^{(2)}-2}{2}\right| \times 100 \%$ is
(a) 7.5%
(b) 5.0%
(c) 1.0%
(d) 2.5%

Ans.: (d)

Solution: $x_{0}=1$
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\left(x_{n}^{2}-4\right)}{2 x_{n}}$
$x_{1}=x_{0}-\frac{\left(x_{n}^{2}-4\right)}{2 x_{0}}=1-\frac{(-3)}{2}=1+\frac{3}{2}=\frac{5}{2} x_{2}=x_{1}-\frac{\left(x_{1}^{2}-4\right)}{2 x_{1}}=\frac{5}{2}-\frac{\left(\frac{25}{4}-4\right)}{2 \times \frac{5}{2}}=\frac{5}{2}-\frac{9}{20}=\frac{41}{20}$
$\left|\frac{\frac{41}{20}-2}{2}\right| \times 100=\frac{1}{40} \times 100=2.5 \%$
Q65. Which of the following decay processes is allowed?
(a) $K^{0} \rightarrow \mu^{+}+\mu^{-}$
(b) $\mu^{-} \rightarrow e^{-}+\gamma$
(c) $n \rightarrow p+\pi^{-}$
(d) $n \rightarrow \pi^{+}+\pi^{-}$

Ans.: (a)
Solution: $q: 0 \quad+1 \quad-1 \quad$: conserved
Spin: $0 \quad \frac{1}{2} \quad \frac{1}{2} \quad:$ conserved
$\begin{array}{cllll}L_{\mu}: & 0 & -1 & +1 & \text { : conserved }\end{array}$
$I: \quad \frac{1}{2} \quad 0 \quad 0 \quad:$ Not conserved
$I_{3}: \quad \frac{-1}{2} \quad 0 \quad 0 \quad$: Not conserved
$S: \quad+1 \quad 0 \quad 0 \quad$: Not conserved
Thus this is an allowed decay through weak interaction.
Q66. A metallic wave guide of square cross-section of side L is excited by an electromagnetic wave of wave-number k. The group velocity of the $T E_{11}$ mode is
(a) $\frac{c k L}{\sqrt{k^{2} L^{2}+\pi^{2}}}$
(b) $\frac{c}{k L} \sqrt{k^{2} L^{2}-2 \pi^{2}}$
(c) $\frac{c}{k L} \sqrt{k^{2} L^{2}-\pi^{2}}$
(d) $\frac{c k L}{\sqrt{k^{2} L^{2}+2 \pi^{2}}}$

Ans.: (d)
Solution: $K=\frac{1}{c} \sqrt{\omega^{2}-\omega_{m n}^{2}} \Rightarrow K^{2}=\frac{1}{c^{2}}\left(\omega^{2}-\omega_{m n}^{2}\right)$

$$
\begin{gathered}
\Rightarrow \omega^{2}=c^{2} K^{2}+\omega_{m n}^{2} \quad \text { where } \omega_{m n}=c \pi \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}} \\
\Rightarrow \omega^{2}=c^{2} K^{2}+\frac{2 c \pi^{2}}{L^{2}} \\
\Rightarrow 2 \omega \frac{d \omega}{d K}=c^{2} \times 2 K \Rightarrow v_{g}=\frac{d \omega}{d K}=c^{2} \frac{K}{\omega} \\
\\
\because \omega^{2}=c^{2} K^{2}+2 \frac{c^{2} \pi^{2}}{L^{2}} \Rightarrow \frac{\omega^{2}}{K^{2}}=c^{2}+\frac{c \pi}{L} \\
\Rightarrow \frac{\omega c^{2} \pi^{2}}{K}= \\
K^{2} L^{2} \\
c^{2}+\frac{2 c^{2} \pi^{2}}{K^{2} L^{2}} \Rightarrow v_{g}=\frac{c^{2}}{\sqrt{c^{2}+\frac{2 c^{2} \pi^{2}}{K^{2} L^{2}}}} \Rightarrow v_{g}=\frac{c K L}{\sqrt{K^{2} L^{2}+2 \pi^{2}}}
\end{gathered}
$$

Q67. A parallel plate capacitor with 1 cm separation between the plates has two layers of dielectric with dielectric constants $\kappa=2$ and $\kappa=4$, as shown in the figure below. If a potential difference of 10 V is applied between the plates, the magnitude of the bound surface charge density (in units of C / m^{2}) at the junction of the dielectrics is

(a) $250 \varepsilon_{0}$
(b) $2000 \varepsilon_{0} / 3$
(c) $2000 \varepsilon_{0}$
(d) $200 \varepsilon_{0} / 3$

Ans.: (b)
Solution:

$$
\begin{aligned}
& V=E_{1} d+E_{2} d=\frac{\sigma}{\epsilon_{1}} d+\frac{\sigma}{\epsilon_{2}} d \\
& =\frac{\sigma}{2 \epsilon_{0}} d+\frac{\sigma}{4 \epsilon_{0}} d=\frac{3 \sigma}{4 \epsilon_{0}} d \\
& V=10 \text { volts, } d=0.5 \mathrm{~cm} \\
& \Rightarrow \sigma=\frac{4 \epsilon_{0}}{3 \times 0.5 \times 10^{-2}} \times 10=\frac{4 \times 10^{14}}{15} \epsilon_{0} \\
& \vec{P}_{1}=\epsilon_{0} \chi e_{1} \vec{E}_{1}=\epsilon_{0}(2-1) \times \frac{\sigma}{2 \epsilon_{0}}=\frac{\sigma}{2}=\sigma_{1} \\
& \vec{P}_{2}=\epsilon_{0} \chi e_{2} \vec{E}_{2}=\epsilon_{0}(4-1) \times \frac{\sigma}{4 \epsilon_{0}}=\frac{3 \sigma}{4}=\sigma_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sigma=\sigma_{1}-\sigma_{2}=\frac{\sigma}{2}-\frac{3 \sigma}{4}=-\frac{\sigma}{4}=-\frac{1}{4} \times \frac{4 \times 10^{14}}{15} \epsilon_{0} \\
& \Rightarrow \sigma=-\frac{2000}{3} \epsilon_{0}
\end{aligned}
$$

Q68. The Hamiltonian of a system with two degrees of freedom is $H=q_{1} p_{1}-q_{2} p_{2}+a q_{1}^{2}$, where $a>0$ is a constant. The function $q_{1} q_{2}+\lambda p_{1} p_{2}$ is a constant of motion only if λ is
(a) 0
(b) 1
(c) $-a$
(d) a

Ans.: (a)
Solution: $H=q_{1} p_{1}-q_{2} p_{2}+a q_{1}^{2}$

$$
\begin{aligned}
& f=\left(q_{1} q_{2}+\lambda p_{1} p_{2}\right) \\
& \frac{d f}{d t}=[f, H]+\frac{\partial f}{\partial t} \\
& \frac{\partial f}{\partial t}=0 \Rightarrow \frac{d f}{d t}=[f, H]=0 \\
& {[f, H]=\left[\frac{\partial f}{\partial q_{1}} \cdot \frac{\partial H}{\partial p_{1}}-\frac{\partial f}{\partial p_{1}} \cdot \frac{\partial H}{\partial q_{1}}\right]+\left[\frac{\partial f}{\partial q_{2}} \cdot \frac{\partial H}{\partial p_{2}}-\frac{\partial f}{\partial p_{2}} \cdot \frac{\partial H}{\partial q_{2}}\right]=0} \\
& q_{2} \cdot q_{1}-\lambda p_{2}\left(p_{1}+2 a q_{1}\right)+q_{1}\left(-q_{2}\right)-\lambda p_{1}\left(-p_{2}\right)=0 \\
& q_{2} q_{1}-\lambda p_{1} p_{2}-2 a \lambda p_{2} q_{1} p_{2}-q_{1} q_{2}+\lambda p_{1} q_{2}=0 \\
& \lambda=0
\end{aligned}
$$

Q69. The function $f(t)$ is a periodic function of period 2π. In the range $(-\pi, \pi)$, it equals e^{-t}. If $f(t)=\sum_{-\infty}^{\infty} c_{n} e^{\text {int }}$ denotes its Fourier series expansion, the sum $\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}$ is
(a) 1
(b) $\frac{1}{2 \pi}$
(c) $\frac{1}{2 \pi} \cosh (2 \pi)$
(d) $\frac{1}{2 \pi} \sinh (2 \pi)$

Ans.: (d)
Solution: $f(t)=e^{-t} \quad-\pi<x<\pi$

$$
\begin{aligned}
& f(t)=\sum_{-\infty}^{\infty} c_{n} e^{\mathrm{int}} \\
& \sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-2 t} d t=\left.\frac{1}{2 \pi} \cdot \frac{e^{-2 t}}{-2}\right|_{-\pi} ^{\pi}=\frac{1}{2 \pi}\left[\frac{e^{-2 \pi}-e^{2 \pi}}{-2}\right]=\frac{1}{2 \pi} \sinh 2 \pi
\end{aligned}
$$

Q70. The fixed points of the time evolution of a one-variable dynamical system described by $y_{t+1}=1-2 y_{t}^{2}$ are 0.5 and -1 . The fixed points 0.5 and -1 are
(a) both stable
(b) both unstable
(c) unstable and stable, respectively
(d) stable and unstable, respectively

Ans.: (b)
Solution: $y_{n+1}=1-2 y_{t}^{2}$
For fixed point $y_{n+1}=y_{n}$
$y_{n}=1-2 y_{n}^{2}$
$2 y_{n}^{2}+y_{n}-1=0$
$y_{n}^{2}+\frac{1}{2} y_{n}-\frac{1}{2}=0$
$y_{n}=-1,0.5$
$f=y_{n}=1-2 y_{n}^{2}$
$\frac{\partial f}{\partial y}=-4 y \quad y=-1$
$\frac{\partial f}{\partial y}=4 \rightarrow|4|>1$
unstable
$y=0.5 \quad \frac{\partial f}{\partial y}=-2, \quad|-2|>1$ unstable
Q71. Following a nuclear explosion, a shock wave propagates radially outwards. Let E be the energy released in the explosion and ρ be the mass density of the ambient air. Ignoring the temperature of the ambient air, using dimensional analysis, the functional dependence of the radius R of the shock front on E, ρ and the time t is
(a) $\left(\frac{E t^{2}}{\rho}\right)^{1 / 5}$
(b) $\left(\frac{\rho}{E t^{2}}\right)^{1 / 5}$
(c) $\frac{E t^{2}}{\rho}$
(d) $E \rho t^{2}$

Ans. : (a)
Q72. The pressure p of a gas depends on the number density ρ of particles and the temperature T as $p=k_{B} T \rho-B_{2} \rho^{2}+B_{3} \rho^{3}$ where B_{2} and B_{3} are positive constants. Let T_{c}, ρ_{c} and p_{c} denote the critical temperature, critical number density and critical pressure, respectively. The ratio $\rho_{c} k_{B} T_{c} / p_{c}$ is equal to
(a) $\frac{1}{3}$
(b) 3
(c) $\frac{8}{3}$
(d) 4

Ans.: (b)
Solution: $P=k_{B} T \rho-B_{2} \rho^{2}+B_{3} \rho^{3}$
For critical constants

$$
\begin{align*}
& \frac{\partial P}{\partial \rho}=k_{B} T-2 B_{2} \rho+3 B_{3} \rho^{2}=0 \tag{i}\\
& \frac{\partial^{2} P}{\partial \rho^{2}}=-2 \rho_{2}+6 B_{3} \rho=0 \tag{ii}\\
& 2 B_{2}=6 B_{3} \rho \Rightarrow B_{2}=3 B_{3} \rho \\
& k_{B} T_{C}=3 B_{3} \rho_{c}^{2} \\
& P_{c}=3 B_{3} P_{c}^{3}-3 B_{3} \rho_{c}^{3}+B_{3} \rho_{c}^{3} \\
& \frac{\rho_{c} k_{B} T_{c}}{p_{c}}=\frac{P_{c} 3 B_{3} \rho_{c}^{2}}{B_{3} \rho_{c}^{3}}=3
\end{align*}
$$

Q73. The mean kinetic energy per atom in a sodium vapour lamp is 0.33 eV . Given that the mass of sodium is approximately $22.5 \times 10^{9} \mathrm{eV}$, the ratio of the Doppler width of an optical line to its central frequency is
(a) 7×10^{-7}
(b) 6×10^{-6}
(c) 5×10^{-5}
(d) 4×10^{-4}

Ans. : (b)
Solution: Dopper shift is

$$
\Delta v_{0}=1.67 v_{0} \sqrt{\frac{2 k_{B} T}{m c^{2}}} \Rightarrow \frac{\Delta v_{0}}{v_{0}}=1.67 \sqrt{\frac{0.33}{22.5 \times 10^{9}}}=6.35 \times 10^{-6}
$$

The correct option is (b)
Q74. In a collector feedback circuit shown in the figure below, the base emitter voltage $V_{B E}=0.7 \mathrm{~V}$ and current gain $\beta=\frac{I_{C}}{I_{B}}=100$ for the transistor

The value of the base current I_{B} is
(a) $20 \mu \mathrm{~A}$
(b) $40 \mu \mathrm{~A}$
(c) $10 \mu \mathrm{~A}$
(d) $100 \mu \mathrm{~A}$

Ans.: (a)
Solution: Apply K.V.L in input section
$-20 V+B I_{B} \times 5 K+I_{B} \times 500 K+0.7 V=0$
$\Rightarrow I_{B}=\frac{193}{100 \times 5 K+500 K}=19.3 \mu \mathrm{~A}$
Q75. For T much less than the Debye temperature of copper, the temperature dependence of the specific heat at constant volume of copper, is given by (in the following a and b are positive constants)
(a) $a T^{3}$
(b) $a T+b T^{3}$
(c) $a T^{2}+b T^{3}$
(d) $\exp \left(-\frac{a}{k_{B} T}\right)$

Ans. : (b)
Solution: The specific heat of model is sum of electric and phonon specific heat

$$
C=C_{e}+C_{p h}
$$

For $T \ll \theta_{0}: C_{P h}=b T^{3}$ and $C_{e}=a T \quad \therefore C=a T+b T^{3}$
Thus correct option is (b)

Our Star Achievers

NET / JRF AIR - 01
Classroom Course

JEST AIR - 04
Online Live Batch

JRF AIR - 02
Classroom Course

GATE AIR-03
Pre-Recorded Batch

IIT-JAM AIR - 05
Online Live Batch

JEST AIR - 06
Online Live Batch

