IIT-JAM - 2021

SECTION - A

Multiple Choice Questions (MCQ)

Q1 - Q10 Carry One Mark Each

Q1. The function $e^{\cos x}$ is Taylor expanded about $x=0$. The coefficient of x^{2} is
(a) $-\frac{1}{2}$
(b) $-\frac{e}{2}$
(c) $\frac{e}{2}$
(d) Zero

Ans. : (b)
Solution: $f(x)=e^{\cos x}$
Taylor expansion about $x=x_{0}$ is
$f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\ldots \infty$
\therefore Taylor expansion about $x=0$
$f(x)=f(0)+x f^{\prime}(0)+x^{2} \frac{f^{\prime \prime}(0)}{2!}+--\infty$
Coefficient of x^{2} is $\frac{f^{\prime \prime}(0)}{2!}$
$f(x)=e^{\cos x} \Rightarrow f^{\prime}(x)=-\sin x e^{\cos x}$
$f^{\prime \prime}(x)=-\left[\cos x e^{\cos x}+\sin x\left(-\sin x e^{\cos x}\right)\right]=\left(-\cos x+\sin ^{2} x\right) e^{\cos x}$
$\therefore f^{\prime \prime}(0)=(-1+0) e^{1}=-e$
\therefore coefficients of $x^{2}=\frac{f^{\prime \prime}(0)}{2!}=\frac{-e}{2}$
Q2. Let M be a 2×2 matrix. Its trace is 6 and its determinant has value 8 . Its eigenvalues are
(a) 2 and 4
(b) 3 and 3
(c) 2 and 6
(d) -2 and -3

Ans. : (a)
Solution: M is a 2×2 matrix
We know trace $=$ sum of eigenvalues
and determinant $=$ product of eigenvalues
Let eigenvalues are λ_{1} and λ_{2}.
$\therefore \lambda_{1}+\lambda_{2}=6$ and $\lambda_{1} \lambda_{2}=8$
$\lambda_{1}=2, \lambda_{2}=4$

Q3. A planet is in a highly eccentric orbit about a star. The distance of its closest approach is 300 times smaller than its farthest distance from the star. If the corresponding speeds are v_{c} and v_{f}, then $\frac{v_{c}}{v_{f}}$ is
(a) $\frac{1}{300}$
(b) $\frac{1}{\sqrt{300}}$
(c) $\sqrt{300}$
(d) 300

Ans. : (d)
Solution: Using conservation of angular momentum
$m v_{c} r_{c}=m v_{f} r_{f} \Rightarrow \frac{v_{c}}{v_{f}}=\frac{r_{f}}{r_{c}}=\frac{300 r_{c}}{r_{c}}=300$
Q4. An object of density ρ is floating in a liquid with 75% of its volume submerged. The density of the liquid is
(a) $\frac{4}{3} \rho$
(b) $\frac{3}{2} \rho$
(c) $\frac{8}{5} \rho$
(d) 2ρ

Ans. : (a)
Solution: Weight of object equal to buoyancy force

$$
V \rho g=\frac{3}{4} V d g \Rightarrow d=\frac{4}{3} \rho
$$

Q5. An experiment with a Michelson interferometer is performed in vacuum using a laser of wavelength 610 nm . One of the beams of the interferometer passes through a small glass cavity 1.3 cm long. After the cavity is completely filled with a medium of refractive index $n, 472$ dark fringes are counted to move past a reference line. Given that the speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the value of n is
(a) 1.01
(b) 1.04
(c) 1.06
(d) 1.10

Ans. : (a)
Solution: Change in optical path $\Delta x=m \lambda \Rightarrow 2(n-1) t=m \lambda$
$\Rightarrow n-1=\frac{n \lambda}{2 t}=\frac{472 \times 610 \times 10^{-9}}{2 \times 1 \cdot 3 \times 10^{-2}}$
$\Rightarrow n-1=0 \cdot 011 \Rightarrow n=1 \cdot 011$

Q6. For a semiconductor material, the conventional flat band energy diagram is shown in the figure. The variables Y, X respectively, are
(a) Energy, Momentum
(b) Energy, Distance
(c) Distance, Energy
(d) Momentum, Energy

717171717171717
valence band $\xrightarrow{\text { valenc }}$

Solution: Along the y-axis energy varies while along x -axis distance is variable.
Q7. For the given circuit, V_{D} is the threshold voltage of the diode. The graph that best deposits variation of V_{0} with V_{i} is

(a)

(c)

(b)

(d)

Ans. : (a)

Postive half Cycle

Negative half Cycle

Solution:
Q8. Arrange the following telescopes, where D is the telescope diameter and λ is the wavelength, in order of decreasing resolving power:
I. $D=100 \mathrm{~m}, \lambda=21 \mathrm{~cm}$
II. $D=2 m, \lambda=500 \mathrm{~nm}$
III. $D=1 \mathrm{~m}, \lambda=100 \mathrm{~nm}$
IV. $D=2 \mathrm{~m}, \lambda=10 \mathrm{~mm}$
(a) III, II, IV, I
(b) II, III, I, IV
(c) IV, III, II, I
(d) III, II, I, IV

Ans. : (d)
Solution: $d \theta=1.22 \frac{\lambda}{D}$
$d \theta_{I}=2.56 \times 10^{-3} ;$

$$
d \theta_{I I}=3.05 \times 10^{-7}
$$

$d \theta_{\text {III }}=1.22 \times 10^{-7} ;$
$d \theta_{I V}=6.1 \times 10^{-3}$
Resolving power $=\frac{1}{d \theta}$
$R P_{I I I}>R P_{I I}>R P_{I}>R P_{I V}$
Q9. Metallic lithium has bcc crystal structure. Each unit cell is a cube of side a. The number of atoms per unit volume is
(a) $\frac{1}{a^{3}}$
(b) $\frac{2}{\sqrt{2} a^{3}}$
(c) $\frac{2}{a^{3}}$
(d) $\frac{4}{a^{3}}$

Ans. : (c)
Solution: The effective number of atoms in BCC is $n_{\text {eff }}=\frac{1}{8} \times 8+1=2$
The volume of the bcc unit cell of side a is a^{3}.
Thus, the number of atoms per unit volume is $=\frac{2}{a^{3}}$.
Therefore, the correct option is (c).
Q10. The moment of inertia of a solid sphere (radius R and mass M) about the axis which is at a distance of $\frac{R}{2}$ from the centre is
(a) $\frac{3}{20} M R^{2}$
(b) $\frac{1}{2} M R^{2}$
(c) $\frac{13}{20} M R^{2}$
(d) $\frac{9}{10} M R^{2}$

Ans. : (c)
Solution:
Using parallel axis theorem
$I_{0}=I_{C . M}+M d^{2} ; d=\frac{R}{2}, I_{C . M}=\frac{2}{5} M R^{2}$
$I_{0}=\frac{2}{5} M R^{2}+M\left(\frac{R}{2}\right)^{2}=\frac{2}{5} M R^{2}+\frac{M R^{2}}{4}=\left(\frac{8+5}{20}\right) M R^{2}=\frac{13}{20} M R^{2}$

Q11 - Q30. carry two marks each

Q11. Let (x, y) denote the coordinates in a rectangular Cartesian coordinate system C. Let $\left(x^{\prime}, y^{\prime}\right)$ denote the coordinates in another coordinate system C^{\prime} defined by

$$
\begin{aligned}
& x^{\prime}=2 x+3 y \\
& y^{\prime}=-3 x+4 y
\end{aligned}
$$

The area element in C^{\prime}, is
(a) $\frac{1}{17} d x^{\prime} d y^{\prime}$
(b) $12 d x^{\prime} d y^{\prime}$
(c) $d x^{\prime} d y^{\prime}$
(d) $x^{\prime} d x^{\prime} d y^{\prime}$

Ans. : (a)
Solution: $C(x, y) \rightarrow C^{\prime}\left(x^{\prime}, y^{\prime}\right)$
$d x d y=J d x^{\prime} d y^{\prime}$
where $J=\frac{J(x, y)}{J\left(x^{\prime}, y^{\prime}\right)}=\left|\begin{array}{ll}\frac{\partial x}{\partial x^{\prime}} & \frac{\partial y}{\partial x^{\prime}} \\ \frac{\partial x}{\partial y^{\prime}} & \frac{\partial y}{\partial y^{\prime}}\end{array}\right|$
$J^{\prime}=\frac{J\left(x^{\prime}, y^{\prime}\right)}{J(x, y)}=\left|\begin{array}{ll}\frac{\partial x^{\prime}}{\partial x} & \frac{\partial x^{\prime}}{\partial y} \\ \frac{\partial y^{\prime}}{\partial x} & \frac{\partial y^{\prime}}{\partial y}\end{array}\right|=\frac{1}{J}$
$J^{\prime}=\left|\begin{array}{cc}2 & 3 \\ -3 & 4\end{array}\right|=8-(-9)=17 \quad\left[\begin{array}{l}x^{\prime}=2 x+3 y \\ y^{\prime}=-3 x+4 y\end{array}\right]$
$\therefore J=\frac{1}{J^{\prime}}=\frac{1}{17} \quad \therefore d x d y=\frac{1}{17} d x^{\prime} d y^{\prime}$
Q12. Three events, $E_{1}(c t=0, x=0), E_{2}(c t=0, x=L)$ and $E_{3}(c t=0, x=-L)$ occur, as observed in an inertial frame S. Frame S^{\prime} is moving with a speed v along the positive x - direction with respect to S. In S^{\prime}, let $t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}$ be the respective times at which E_{1}, E_{2} and E_{3} occurred. Then,
(a) $t_{2}^{\prime}<t_{1}^{\prime}<t_{3}^{\prime}$
(b) $t_{1}^{\prime}=t_{2}^{\prime}=t_{3}^{\prime}$
(c) $t_{3}^{\prime}<t_{1}^{\prime}<t_{2}^{\prime}$
(d) $t_{3}^{\prime}<t_{2}^{\prime}<t_{1}^{\prime}$

Ans. : (a)
Solution: $t_{1}^{\prime}=\gamma\left(t_{1}-\frac{v}{c^{2}} x_{1}\right) \Rightarrow t_{1}^{\prime}=\gamma t$
$t_{2}^{\prime}=\gamma\left(t_{2}-\frac{v}{c^{2}} x_{2}\right) \Rightarrow t_{1}^{\prime}=\gamma\left(t-\frac{v}{c^{2}} L\right)$
$t_{3}^{\prime}=\gamma\left(t_{3}-\frac{v}{c^{2}} x_{3}\right) \Rightarrow t_{2}^{\prime}=\gamma\left(t-\frac{v}{c^{2}}(-L)\right) \Rightarrow t_{2}^{\prime}=\gamma\left(t+\frac{v}{c^{2}} L\right)$
$t_{2}^{\prime}<t_{1}^{\prime}<t_{3}^{\prime}$
Q13. The solution $y(x)$ of the differential equation $y \frac{d y}{d x}+3 x=0, y(1)=0$, is described by
(a) an ellipse
(b) a circle
(c) a parabola
(d) a straight line

Ans. : (a)
Solution: $y \frac{d y}{d x}+3 x=0 \Rightarrow y \frac{d y}{d x}=-3 x \Rightarrow \int y d y+\int 3 x d x=\int 0 \Rightarrow \frac{y^{2}}{2}+\frac{3 x^{2}}{2}=c$
Finding the value of c, at $x=1, y=0 ; \Rightarrow \frac{0^{2}}{2}+\frac{3(1)^{2}}{2}=c \Rightarrow c=\frac{3}{2}$
$\therefore \frac{y^{2}}{2}+\frac{3 x^{2}}{2}=\frac{3}{2} \Rightarrow y^{2}+3 x^{2}=3 \Rightarrow \frac{y^{2}}{3}+x^{2}=1 \Rightarrow \frac{x^{2}}{(1)^{2}}+\frac{y^{2}}{(\sqrt{3})^{2}}=1$
Which is equation of an ellipse.

Q14. In the figure below, point A is the object and point B is the image formed by the lens.
Let l_{1}, l_{2} and l_{3} denote the optical path lengths of the three rays 1,2 and 3 , respectively. Identify the correct statement.

(a) $l_{1}=l_{2}=l_{3}$
(b) $l_{1}>l_{2}<l_{3}$
(c) $l_{1}=l_{3}<l_{2}$
(d) $l_{1}=l_{3}>l_{2}$

Ans. : (a)
Solution: Fermat's principle: A ray of light in traveling between two points requires either a minimum or a maximum time.

Q15. A particle initially at the origin in an inertial frame S, has a constant velocity Vî. Frame S^{\prime} is rotating about the z - axis with angular velocity ω (anticlockwise). The coordinate axes of S^{\prime} coincide with those of S at $t=0$. The velocity of the particle $\left(V_{x}^{\prime}, V_{y}^{\prime}\right)$ in the S^{\prime} frame, at $t=\frac{\pi}{2 \omega}$ is
(a) $\left(-\frac{V \pi}{2},-V\right)$
(b) $(-V,-V)$
(c) $\left(\frac{V \pi}{2},-V\right)$
(d) $\left(\frac{3 V \pi}{2},-V\right)$

Ans. : (a)
Solution:

After time $t=\frac{\pi}{2 \omega}$
From S frame $V=V \hat{i}$ after time $t=\frac{\pi}{2 \omega}$ position vector is $\vec{r}=\vec{V} \cdot t \Rightarrow \vec{r}=\frac{V \pi}{2 \omega} \hat{i}$

The angular velocity of S^{\prime} frame with respect to S frame is $\vec{\omega}=\omega \hat{k}$
Relation between rotation and space frame is
$\left(\frac{d \vec{r}}{d t}\right)_{\text {Space }}=\left(\frac{d \vec{r}}{d t}\right)_{\text {rot }}+\vec{\omega} \times \vec{r} \Rightarrow V \hat{i}=\left(\frac{d \vec{r}}{d t}\right)_{\text {rot }}+\omega \frac{\pi V}{2 \omega}(\hat{k} \times \hat{i})$
$\left(\frac{d \vec{r}}{d t}\right)_{\text {rot }}=V \hat{i}-\frac{\pi V}{2} \hat{j}$ but \hat{i} and \hat{j} defined in S frame.
Due to rotation of S^{\prime} frame after time $t=\frac{\pi}{2 \omega} ; \hat{i} \equiv-\hat{j}^{\prime}, \hat{j} \equiv \hat{i}^{\prime}$
$\left(\frac{d \vec{r}}{d t}\right)_{\text {rot }}=-\hat{V j}-\frac{\pi V}{2} \hat{i}^{\prime}$
So answer (a) is correct.
Q16. For the given circuit, the output Y is

(a) 0
(b) 1
(c) A
(d) \bar{A}

Ans. : (d)
Solution: $Y_{1}=\overline{A \oplus 0}=\overline{A 0}+A 0=\bar{A}$
$Y_{2}=\overline{A \oplus \bar{A}}=A \overline{\bar{A}}+\bar{A} A=0$
Thus $Y=\overline{A \oplus 0}=\overline{A 0}+A 0=\bar{A}$

Q17. The total charge contained within the cube (see figure), in which the electric field is given by $\vec{E}=K\left(4 x^{2} \hat{i}+3 y \hat{j}\right)$, where ε_{0} is the permittivity of free space, is

(a) $7 K \varepsilon_{0}$
(b) $5 K \varepsilon_{0}$
(c) $33 K \varepsilon_{0}$
(d) Zero

Ans. : (a)
Solution: (i) $x=1, d \vec{a}=d y d z \hat{x}, \vec{E} \cdot d \vec{a}=4 K x^{2} d y d z=4 K d y d z$ so

$$
\int \vec{E} \cdot d \vec{a}=4 K \int_{0}^{1} d y \int_{0}^{1} d z=4 K .
$$

(ii) $x=0, d \vec{a}=-d y d z \hat{x}, \vec{E} \cdot d \vec{a}=-4 K x^{2} d y d z=0$ so $\int \vec{E} \cdot d \vec{a}=0$.
(iii) $y=1, d \vec{a}=d x d z \hat{y}, \vec{E} \cdot d \vec{a}=3 K y d x d z=3 K d x d z$ so $\int \vec{E} \cdot d \vec{a}=0$.
(iv) $y=0, d \vec{a}=-d x d z \hat{y}, \vec{E} \cdot d \vec{a}=-3 K y d x d z=0$ so $\int \vec{E} \cdot d \vec{a}=3 K \int_{0}^{1} d x \int_{0}^{1} d z=3 K$.
(v) $z=1, d \vec{a}=d x d y \hat{z}, \vec{E} \cdot d \vec{a}=0$ so $\int \vec{E} \cdot d \vec{a}=0$.
(vi) $z=0, d \vec{a}=-d x d y \hat{z}, \vec{E} \cdot d \vec{a}=0$ so $\int \vec{E} \cdot d \vec{a}=0$.

Thus $Q_{\text {enc }}=\varepsilon_{0} \oint \vec{E} \cdot d \vec{a}=4 K \varepsilon_{0}+0+3 K \varepsilon_{0}+0+0+0=7 K \varepsilon_{0}$
Q18. Four charges are placed very closed to each other, as shown. The separation between the two charges on the y-axis is a. The separation between the two charges on the x-axis is also a. The leading order (non-vanishing) form of the electrostatic potential, at point P, at a distance r from the origin $(r \gg a)$, is

(a) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{2 r^{2}}(\sqrt{3}-1)$
(b) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q a}{r^{2}}$
(c) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{r^{2}}(\sqrt{5}-1)$
(d) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{r^{2}}(1-\sqrt{3})$

Ans. : (a)
Solution: $Q_{\text {mono }}=q+q-q-q=0$
$\vec{p}=q \times\left(\frac{a}{2} \hat{y}\right)+q\left(-\frac{a}{2} \hat{x}\right)-q\left(-\frac{a}{2} \hat{y}\right)-q\left(\frac{a}{2} \hat{x}\right)=q a(-\hat{x}+\hat{y})$
$V_{d i p}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{r^{2}}(-\hat{x} \cdot \hat{r}+\hat{y} \cdot \hat{r})$
$\Rightarrow V_{\text {dip }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{r^{2}}\left(-\cos 60^{\circ}+\sin 60^{\circ}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{r^{2}}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}\right)$
$\Rightarrow V_{\text {dip }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{2 r^{2}}(\sqrt{3}-1)$
Q19. At $t=0, N_{0}$ number of a radioactive nuclei A start decaying into B with a decay constant λ_{a}. The daughter nuclei B decay into nuclei C with a decay constant λ_{b}. Then, the number of nuclei B at small time t (to the leading order) is
(a) $\lambda_{a} N_{0} t$
(b) $\left(\lambda_{a}-\lambda_{b}\right) N_{0} t$
(c) $\left(\lambda_{a}+\lambda_{b}\right) N_{0} t$
(d) $\lambda_{b} N_{0} t$

Ans. : (a)
Solution:

$$
A \xrightarrow{\lambda_{a}} B \xrightarrow{\lambda_{b}} C
$$

$N_{B}=\frac{N_{0} \lambda_{a}}{\lambda_{b}-\lambda_{a}}\left[e^{-\lambda_{a} t}-e^{-\lambda_{b} t}\right]=\frac{N_{0} \lambda_{a}}{\lambda_{b}-\lambda_{a}}\left[1-\lambda_{a} t-1+\lambda_{b} t\right]=\frac{N_{0} \lambda_{a}}{\lambda_{b}-\lambda_{a}}\left(\lambda_{b}-\lambda_{a}\right) t$
$N_{B}=N_{0} \lambda_{a} t$
Q20. The electric field of an electromagnetic wave has the form $\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}$. At $t=0$, a test particle of charge q is at $z=0$, and has velocity $\vec{v}=0.5 c \hat{k}$, where c is the speed of light. The total instantaneous force on the particle is
(a) $\frac{q E_{0}}{2} \hat{i}$
(b) $\frac{q E_{0}}{\sqrt{2}}(\hat{i}+\hat{j})$
(c) $\frac{q E_{0}}{2}(\hat{i}-\hat{k})$
(d) Zero

Ans. : (a)
Solution: $\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}$ and corresponding $\vec{B}=\frac{E_{0}}{c} \cos (\omega t-k z) \hat{j}$
Force on charge particle q is $\vec{F}=q \vec{E}+q(\vec{v} \times \vec{B})$

$$
\begin{aligned}
& \vec{F}=q E_{0} \cos (\omega t-k z) \hat{i}+q\left(\frac{c}{2} \hat{k} \times \frac{E_{0}}{c} \cos (\omega t-k z) \hat{j}\right) \\
& \vec{F}=q E_{0} \cos (\omega t-k z) \hat{i}-\frac{q E_{0}}{2} \cos (\omega t-k z) \hat{i}=\frac{q E_{0}}{2} \cos (\omega t-k z) \hat{i}
\end{aligned}
$$

Thus the total instantaneous force on the particle is $\frac{q E_{0}}{2} \hat{i}$.

Q21. The rms velocity of molecules of oxygen gas is given by v at some temperature T. The molecules of another gas have the same rms velocity at temperature $\frac{T}{16}$. The second gas is
(a) Hydrogen
(b) Helium
(c) Nitrogen
(d) Neon

Ans. : (a)
Solution: $v_{\text {linear }}=\sqrt{\frac{3 k_{B} T}{m}}=\sqrt{\frac{3 R T}{M}}, M$ is molecular mass.
For oxygen, molecule, $M=2 \times 16=32$
$v_{r m s}^{2}($ oxygen $)=v_{r m s}^{2}($ unknown gas $) \Rightarrow \frac{3 R T}{32}=\frac{3 R}{M}\left(\frac{T}{16}\right) \Rightarrow M=2$ i.e., Hydrogen gas.
Q22. A system undergoes a thermodynamic transformation from state S_{1} to state S_{2} via two different paths 1 and 2 . The heat absorbed and work done along path 1 are 50 J and 30 J , respectively. If the heat absorbed along path 2 is 30 J , the work done along path 2 is
(a) Zero
(b) 10 J
(c) 20 J
(d) 30 J

Ans. : (b)
Solution: $\Delta Q_{I}=50 \mathrm{~J}, \Delta W_{I}=30 \mathrm{~J}$
$\Delta Q_{I I}=30 \mathrm{~J}, \Delta W_{I I}=$?
$\Delta Q=\Delta U+\Delta W \Rightarrow \Delta U=\Delta Q-\Delta W$

$\Delta U_{I}=\Delta U_{I I} \Rightarrow \Delta Q_{I}-\Delta W_{I}=\Delta Q_{I I}-\Delta W_{I I}$
$\Rightarrow 50-30=30-\Delta W_{I I} \Rightarrow \Delta W_{I I}=10 \mathrm{~J}$
Q23. The condition for maxima in the interference of two waves

$$
A e^{i\left(\frac{k_{0}}{2}(\sqrt{3} x+y)-\omega t\right)} \text { and } A e^{i\left(\frac{k_{0}}{\sqrt{2}}(x+y)-\omega t\right)}
$$

is given in terms of the wavelength λ and m, an integer, by
(a) $(\sqrt{3}-\sqrt{2}) x+(1-\sqrt{2}) y=2 m \lambda$
(b) $(\sqrt{3}+\sqrt{2}) x+(1-\sqrt{2}) y=2 m \lambda$
(c) $(\sqrt{3}-\sqrt{2}) x-(1-\sqrt{2}) y=m \lambda$
(d) $(\sqrt{3}-\sqrt{2}) x+(1-\sqrt{2}) y=(2 m+1) \lambda$

Ans. : (a)
Solution: $\phi_{1}=\frac{k_{0}}{2}(\sqrt{3 x}+y)-\omega t, \quad \phi_{2}=\frac{k_{0}}{\sqrt{2}}(x+y)-\omega t$
$\Delta \phi=\phi_{1}-\phi_{2}=\frac{k_{0}}{2}[\sqrt{3} x+y-\sqrt{2} x-\sqrt{2 y}]=\frac{k_{0}}{2}[(\sqrt{3}-\sqrt{2}) x+(1-\sqrt{2}) y]$
For maxima: $\quad \Delta \phi=2 m \pi$
$\frac{k_{0}}{2}[(\sqrt{3}-\sqrt{2}) x+(1-\sqrt{2}) y]=2 m \pi$
$(\sqrt{3}-\sqrt{2}) x+(1-\sqrt{2}) y=\frac{4 m \pi}{2 \pi / \lambda}=2 m \lambda$
Q24. A semiconductor $p n$ junction at thermal equilibrium has the space charge density $\rho(x)$ profile as shown in the figure. The figure that best depicts the variation of the electric field E with x is (W denotes the width of the depletion layer)

(a)

(c)

(b)

(d)

Ans. : (b)
Solution: $\frac{d^{2} V}{d x^{2}}=-\frac{\rho}{\varepsilon_{0}} \Rightarrow \frac{d E}{d x}=\frac{\rho}{\varepsilon_{0}} \propto x \Rightarrow E \propto x^{2}$
So option (b) is correct.
Q25. A mass m is connected to a massless spring of spring constant k, which is fixed to a wall. Another mass $2 m$, having kinetic energy E, collides collinearly with the mass m completely inelastically (see figure). The entire set up is placed on a frictionless floor. The maximum compression of the spring is

(a) $\sqrt{\frac{4 E}{3 k}}$
(b) $\sqrt{\frac{E}{3 k}}$
(c) $\sqrt{\frac{E}{5 k}}$
(d) $\sqrt{\frac{E}{7 k}}$

Ans. : (a)
Solution: $\frac{1}{2}\left(2 m v^{2}\right)=E \Rightarrow m v^{2}=E$
Conservation of momentum: $2 m \cdot v=3 m \cdot v_{1} \Rightarrow v_{1}=\frac{2}{3} v$
Conservation of energy after collision
$\frac{1}{2} 3 m \cdot v_{1}^{2}=\frac{1}{2} k A^{2} \Rightarrow k A^{2}=3 m \times\left(\frac{2}{3} v\right)^{2}=k A^{2} \Rightarrow A=\sqrt{\frac{4 m v^{2}}{3 k}} \Rightarrow \sqrt{\frac{4 E}{3 k}}$
Q26. A linearly polarized light falls on a quarter wave plate and the emerging light is found to be elliptically polarized. The angle between the fast axis of the quarter wave plate and the plane of polarization of the incident light, can be
(a) 30°
(b) 45^{0}
(c) 90°
(d) 180°

Ans. : (a)

Solution:

(a) If $\theta=30^{\circ}$, then emergent light will be $E P L$.
(b) If $\theta=45^{\circ}$, then emergent light will be CPL.
(c) If $\theta=90^{\circ}$, than emergent light will be PPL .
(d) If $\theta=180^{\circ}$, then emergent light will be PPL.

Q27. The expression for the magnetic field that induces the electric field

$$
\vec{E}=K(y z \hat{i}+3 z \hat{j}+4 y \hat{k}) \cos (\omega t) \text { is }
$$

(a) $-\frac{K}{\omega}(\hat{i}+y \hat{j}-z \hat{k}) \sin (\omega t)$
(b) $-\frac{K}{\omega}(\hat{i}+y \hat{j}+z \hat{k}) \sin (\omega t)$
(c) $-\frac{K}{\omega}(\hat{i}-y \hat{j}+z \hat{k}) \sin (\omega t)$
(d) $-\frac{K}{\omega}(-\hat{i}+y \hat{j}+z \hat{k}) \sin (\omega t)$

Ans. : (a)
Solution: $\vec{\nabla} \times \vec{E}=K \cos (\omega t)\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y z & 3 z & 4 y\end{array}\right|=K \cos (\omega t)[\hat{i}(4-3)-\hat{j}(0-y)+\hat{k}(0-z)]$
$\Rightarrow \vec{\nabla} \times \vec{E}=K \cos (\omega t)[\hat{i}+y \hat{j}-z \hat{k}]=-\frac{\partial \vec{B}}{\partial t} \quad \Rightarrow \vec{B}=-\frac{K}{\omega} \sin (\omega t)[\hat{i}+y \hat{j}-z \hat{k}]$
Q28. In the Fourier series expansion of two functions $f_{1}(t)=4 t^{2}+3$ and $f_{2}(t)=6 t^{3}+7 t$ in the interval $-\frac{T}{2}$ to $+\frac{T}{2}$, the Fourier coefficient a_{n} and $b_{n}\left(a_{n}\right.$ and b_{n} are coefficients of $\cos (n \omega t)$ and $\sin (n \omega t)$, respectively) satisfy
(a) $a_{n}=0$ and $b_{n} \neq 0$ for $f_{1}(t) ; a_{n} \neq 0$ and $b_{n}=0$ for $f_{2}(t)$
(b) $a_{n} \neq 0$ and $b_{n}=0$ for $f_{1}(t) ; a_{n}=0$ and $b_{n} \neq 0$ for $f_{2}(t)$
(c) $a_{n} \neq 0$ and $b_{n} \neq 0$ for $f_{1}(t) ; a_{n}=0$ and $b_{n} \neq 0$ for $f_{2}(t)$
(d) $a_{n}=0$ and $b_{n} \neq 0$ for $f_{1}(t) ; a_{n} \neq 0$ and $b_{n} \neq 0$ for $f_{2}(t)$

Ans. : (b)
Solution: Fourier series of a function $b / w \quad x \in\left[\frac{-L}{2}, \frac{L}{2}\right]$ $g(x)=a_{0}+\sum a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)$
\therefore Fourier series of a function $t \in[-1 / 2,1 / 2]$
$g(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi t}{T / 2}+b_{n} \sin \frac{n \pi t}{T / 2}\right)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \omega t+b_{n} \sin n \omega t\right)$
where $a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} g(t) \cos \frac{2 n \pi t}{T} d t, \quad b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} g(t) \sin \frac{2 n \pi t}{T} d t$
For $f_{1}(t)=4 t^{2}+3$
$a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} \frac{f_{1}(t)}{\underset{\text { even }}{\downarrow}} \cos \frac{2 n \pi t}{\underset{\substack{\text { even }}}{\frac{T}{\downarrow}} \neq 0 ; ~}$
$b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} \frac{f_{1}(t)}{\underset{\text { even }}{\downarrow}} \sin \frac{2 n \pi t}{\underset{\substack{\downarrow \\ \text { odd }}}{\frac{T}{d}}}=0$
For $f_{2}(t)=6 t^{3}+7 t$ (odd function)

\therefore For $f_{1}(t): a_{n} \neq 0$ and $b_{n}=0$ and For $f_{2}(t): a_{n}=0$ and $b_{n} \neq 0$
Q29. A thin circular disc lying in the $x y$-plane has a surface mass density σ, given by

$$
\sigma(r)=\left\{\begin{array}{cc}
\sigma_{0}\left(1-\frac{r^{2}}{R^{2}}\right) & \text { if } r \leq R \\
0 & \text { if } r>R
\end{array}\right.
$$

where r is the distance from its center. Its moment of inertia about the z-axis, passing through its center is
(a) $\frac{\sigma_{0} R^{4}}{4}$
(b) $\frac{\pi \sigma_{0} R^{4}}{6}$
(c) $\sigma_{0} R^{4}$
(d) $2 \pi \sigma_{0} R^{4}$

Ans. : (b)
Solution: $I_{z}=\int_{0}^{\infty} \int_{0}^{2 \pi} r^{2} d m \quad$ where $\sigma(r)=\frac{d m}{r d r d \theta} \Rightarrow d m=\sigma r d r d \theta$
$I_{z}=\int_{0}^{\infty} \int_{0}^{2 \pi} r^{2} \sigma r d r d \theta=2 \pi \sigma_{0} \int_{0}^{R} r^{3}\left(1-\frac{r^{2}}{R^{2}}\right) d r=2 \pi \sigma_{0}\left(\frac{R^{4}}{4}-\frac{R^{4}}{6}\right)=\frac{\pi \sigma_{0} R^{4}}{6}$
Q30. The radial component of acceleration in plane polar coordinates is given by
(a) $\frac{d^{2} r}{d t^{2}}$
(b) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}$
(c) $\frac{d^{2} r}{d t^{2}}+r\left(\frac{d \theta}{d t}\right)^{2}$
(d) $2 \frac{d r}{d t} \frac{d \theta}{d t}+r \frac{d^{2} \theta}{d t^{2}}$

Ans. : (b)
Solution: $\vec{v}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \Rightarrow \frac{d v}{d t}=\vec{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{\theta}$
$\Rightarrow a_{r}=\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}$

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q31 - Q40 Carry Two Marks Each

Q31. A gaseous system, enclosed in an adiabatic container, is in equilibrium at pressure P_{1} and volume V_{1}. Work is done on the system in a quasi-static manner due to which the pressure and volume change to P_{2} and V_{2}, respectively, in the final equilibrium state. At every instant, the pressure and volume obey the condition $P V^{\gamma}=C$, where $\gamma=\frac{C_{P}}{C_{V}}$ and C is a constant. If the work done is zero, then identify the correct statement(s)
(a) $P_{2} V_{2}=P_{1} V_{1}$
(b) $P_{2} V_{2}=\gamma P_{1} V_{1}$
(c) $P_{2} V_{2}=(\gamma+1) P_{1} V_{1}$
(d) $P_{2} V_{2}=(\gamma-1) P_{1} V_{1}$

Ans. : (a)
Solution:

$$
\left(P_{1}, V_{1}\right) \underset{\text { process }}{\text { adiabatic }}\left(P_{2}, V_{2}\right)
$$

$\Delta Q=0$ [\therefore the process is adiabatic], $\Delta W=0$ [given]
$\Delta Q=\Delta U+\Delta W \Rightarrow \Delta U=0 \Rightarrow \Delta T=0$
i.e. the process is isothermal too
$\therefore P_{1} V_{1}=P_{2} V_{2}$ must satisfy.
Alternate,
Since the process is adiabatic [i.e $\Delta Q=0$]
And work done, $W=0$ [given]
We know, for adiabatic process, Work $=\frac{1}{\gamma-1}\left[P_{1} V_{1}-P_{2} V_{2}\right]$
$0=\frac{1}{\gamma-1}\left(P_{1} V_{1}-P_{2} V_{2}\right) \Rightarrow P_{1} V_{1}=P_{2} V_{2}$

Q32. An isolated ideal gas is kept at pressure P_{1} and volume V_{1}. The gas undergoes free expansion and attains a pressure P_{2} and volume V_{2}. Identify the correct statements(s) $\left(\gamma=\frac{C_{P}}{C_{V}}\right)$
(a) This is an adiabatic process
(b) $P_{1} V_{1}=P_{2} V_{2}$
(c) $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$
(d) This is an isobaric process

Ans. : (a), (b)
Solution:

Free expansion
Free expansion of ideal gas is irreversible adiabatic process. (Since the entropy increase) Work done in free expansion is zero. (Ideal gas)
$W=\frac{1}{\gamma-1}\left(P_{2} V_{2}-P_{1} V_{1}\right)=0 \Rightarrow P_{1} V_{1}=P_{2} V_{2}$
is true for a reversible adiabatic process but since here the process is irreversible, it does not apply here.
Q33. A beam of light travelling horizontally consists of an unpolarized component with intensity I_{0} and a polarized component with intensity I_{p}. The plane of polarization is oriented at an angle θ with respect to the vertical. The figure shows the total intensity $I_{\text {total }}$ after the light passes through a polarizer as a function of the angle α, that the axis of the polarizer makes with respect to the vertical. Identify the correct statements(s)
$I_{\text {total }}\left(W / m^{2}\right)$

(a) $\theta=125^{\circ}$
(b) $I_{p}=5 \mathrm{~W} / \mathrm{m}^{2}$
(c) $I_{0}=17.5 \mathrm{~W} / \mathrm{m}^{2}$
(d) $I_{0}=10 \mathrm{~W} / \mathrm{m}^{2} ; I_{p}=20 \mathrm{~W} / \mathrm{m}^{2}$

Ans. : (d)
Solution: $I_{\text {total }}=\frac{I_{\circ}}{2}+I_{p} \cos ^{2} \theta, I_{\text {min }}=\frac{I_{\circ}}{2}=5 \mathrm{~W} / \mathrm{m}^{2} \Rightarrow I_{\circ}=10 \mathrm{~W} / \mathrm{m}^{2}$
$I_{\text {max }}=\frac{I_{\circ}}{2}+I_{p}=25 \Rightarrow I_{p}=20 \mathrm{~W} / \mathrm{m}^{2}$
Q34. Consider the following differential equation that describes the oscillations of a physical system:

$$
\alpha \frac{d^{2} y}{d t^{2}}+\beta \frac{d y}{d t}+\gamma y=0
$$

If α and β are held fixed, and γ is increased, then,
(a) The frequency of oscillations increases
(b) The oscillations decay faster
(c) The frequency of oscillations decreases
(d) The oscillations decay slower

Ans. : (a)
Solution: $\frac{d^{2} y}{d t^{2}}+\frac{\beta}{\alpha} \frac{d y}{d t}+\frac{\gamma}{\alpha} y=0$
$2 \gamma=\frac{\beta}{\alpha} \Rightarrow \gamma=\frac{\beta}{2 \alpha}, \omega_{0}=\sqrt{\frac{\gamma}{\alpha}}$
(a) $\omega=\sqrt{\omega_{0}^{2}-\gamma^{2}}=\sqrt{\frac{\gamma}{\alpha}-\frac{\beta^{2}}{4 \alpha^{2}}}=\frac{1}{2 \alpha} \sqrt{4 \gamma-\beta^{2}} \Rightarrow \omega=\frac{1}{2 \alpha} \sqrt{4 \gamma-\beta^{2}}$

So, option (a) is correct and option (c) is wrong
(b) $A=A_{0} e^{-\gamma t}$
$\gamma=\frac{\beta}{2 \alpha}=$ constant
So, option (b) and (d) are is wrong.
Q35. For the given circuit, identify the correct statement(s)
(a) $I_{0}=1 \mathrm{~mA}$
(b) $V_{0}=3 V$
(c) If R_{L} is doubled, I_{0} will change to 0.5 mA
(d) If R_{L} is doubled, V_{0} will change to 6 V

Ans. : (a), (b), (d)
Solution: Apply KCL at inverting terminal
$I_{1} \approx I_{2} \Rightarrow \frac{0-V_{1}}{1 k} \approx \frac{V_{1}-V_{0}}{1 k} \Rightarrow V_{0}=2 V_{1}$
Apply KCL at Non-inverting terminal
$I_{0}^{\prime}=I_{0}+I_{0}^{\prime \prime} \Rightarrow \frac{1-V_{1}}{1 k}=\frac{V_{1}}{R_{L}}+\frac{V_{1}-V_{0}}{1 k} \Rightarrow V_{1}=R_{L}$ Volts
(a) $I_{0}=\frac{V_{1}}{R_{L}}=\frac{1.5 \mathrm{~V}}{1.5 \mathrm{k}}=1 \mathrm{~mA}$
(b) $V_{0}=2 V_{1}=2 \times 1.5=3 V$

(c) $I_{0}=\frac{V_{1}}{R_{L}}=\frac{3 \mathrm{~V}}{3 k}=1 \mathrm{~mA}$
(d) $V_{0}=2 V_{1}=6 \mathrm{~V}$

Q36. A Carnot engine operates between two temperatures, $T_{L}=100 \mathrm{~K}$ and $T_{H}=150 \mathrm{~K}$. Each cycle of the engine lasts for 0.5 seconds during which the power delivered is $500 \mathrm{~J} /$ second . Let Q_{H} be the corresponding heat absorbed by the engine and Q_{L} be the heat lost. Identify the correct statement(s)
(a) $Q_{H}=750 \mathrm{~J}$
(b) $\frac{Q_{H}}{Q_{L}} \leq \frac{2}{3}$
(c) The change in entropy of the engine and the hot bath in a cycle is $5 \mathrm{~J} / \mathrm{K}$
(d) The change in entropy of the engine in 0.5 seconds is zero.

Ans. : (a), (c), (d)

Solution: Work done in $1 \mathrm{sec}=500 \mathrm{~J}$
Work done in $0.5 \mathrm{sec}=\frac{500}{2}=250 \mathrm{~J}$ is work done in one cycle $=250 \mathrm{~J}$
$\eta=1-\frac{T_{2}}{T_{1}}=1-\frac{T_{C}}{T_{H}}=1-\frac{100}{150}=\frac{1}{3}$
$\eta=\frac{W}{Q_{H}} \Rightarrow \frac{1}{3}=\frac{250}{Q_{H}} \Rightarrow Q_{H}=750 \mathrm{~J}$
$\eta=1-\frac{Q_{L}}{Q_{H}}=\frac{1}{3} \Rightarrow Q_{L}=\frac{2}{3} \times 750=500 \mathrm{~J}$
$\Rightarrow \frac{Q_{H}}{Q_{L}}=1.5>\frac{2}{3}$

$$
T_{L}=100 \mathrm{~K}
$$

Change in entropy of engine in one cycle
$\Delta S_{\text {engine }}=\frac{Q_{H}}{T_{H}}+\frac{\left(-Q_{L}\right)}{T_{L}}=\frac{750}{150}+\frac{(-500)}{100}=5-5=0$
i.e change in entropy of engine in 0.5 seconds is zero.

Change in entropy of engine and hot bath
$=\Delta S_{\text {engine }}+\Delta S_{\text {hot bath }}=0+\frac{\left(-Q_{H}\right)}{T_{H}}=-5 \mathrm{~J} / \mathrm{K}$
Q37. A time independent conservative force \vec{F} has the form, $\vec{F}=3 y \hat{i}+f(x, y) \hat{j}$. Its magnitude at $x=y=0$ is 8 . The allowed form(s) of $f(x, y)$ is (are)
(a) $3 x+8$
(b) $2 x+8(y-1)^{2}$
(c) $3 x+8 e^{-y^{2}}$
(d) $2 x+8 \cos y$

Ans. : (a), (c)
Solution: For conservative force $\vec{F} ; \quad \vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ 3 y & f(x, y) & 0\end{array}\right|=0$
$\Rightarrow \hat{x}(0-0)+\hat{y}(0-0)+\hat{z}\left(\frac{\partial f}{\partial x}-3\right)=0 \Rightarrow \frac{\partial f}{\partial x}=3$

Q38. The figure shows the cross-section of hollow cylindrical tank, 2.2 m in diameter which is half filled with water (refractive index of 1.33). The space above the water is filled with a gas of unknown refractive index. A small laser moves along the bottom surface and aims a light beam towards the center (see figure). When the laser moves a distance of $S=1.09 \mathrm{~m}$ or beyond from the lowest point in the water, no light enters the gas. Identify the correct statement(s) (speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$).

(a) The refractive index of the gas is 1.05
(b) The time taken for the light beam to travel from the laser to the rim of the tank when $S<1.09 \mathrm{~m}$ is 8.9 ns
(c) The time taken for the light beam to travel from the laser to the rim of the tank when $S>1.09 \mathrm{~m}$ is 9.7 ns
(d) The critical angle for the water-gas interface is 56.77^{0}

Ans. : (b), (c), (d)
Solution: $\theta_{c}=\frac{S}{R}=\frac{1.09}{1.1}=0.991 \mathrm{rad}$

$$
\theta_{c}=56.80 \simeq 56.77^{\circ}
$$

So, option (d) is correct.
(a) Apply Snell's law

$n_{\omega} \sin \theta_{c}=n_{g} \sin 90^{\circ}$
$n_{g}=1.33 \times \sin \left(56.77^{0}\right)=1.11$ or $n_{g}=1.33 \times \sin (56.80)=1.11$
Option (a) is wrong.
(b) If $S<1.09 m$, then time taken by laser light to reach the rim will be
$t=\frac{R}{v_{\omega}}+\frac{R}{v_{a}}=\frac{R}{c}\left(\mu_{\omega}+\mu_{a}\right)=\frac{1.1}{3 \times 10^{8}}(1.33+1.11)=\frac{11 \times 2.44}{3} n s=8.94 n s$

Option (b) is correct.
(c) If $S \geq 1.09 \mathrm{~m}$, then time taken by laser light to reach the rim will be
$t=\frac{2 R}{v_{\omega}}=\frac{2 \times 1.1}{3 \times 10^{8}} \times 1.33=\frac{22 \times 1.33}{3} n s \Rightarrow t=9.75 \mathrm{~ns}$
Option (c) is correct.
Q39. Identify the correct statement(s) regarding nuclei
(a) The uncertainly in the momentum of a proton in a nucleus is roughly 10^{5} times the uncertainly in the momentum of the electron in the ground state of Hydrogen atom
(b) The volume of a nucleus grows linearly with the number of nucleons in it
(c) The energy of γ rays due to de-excitation of nucleus can be of the order of MeV
(d) ${ }^{56} \mathrm{Fe}$ is the most stable nucleus

Ans. : (a), (b), (c), (d)
Solution: (a) $\Delta p_{p} \Delta R_{p}=\Delta p_{e} \Delta R_{e} \simeq \frac{\hbar}{2}$
$\frac{\Delta p_{p}}{\Delta p_{e}}=\frac{\Delta R_{e}}{\Delta R_{p}} \simeq \frac{10^{-10} \mathrm{~m}}{10^{-15} \mathrm{~m}}=10^{5}$
(b) $V=\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi R_{0}^{3} A$
(c) The energy of different energy levels and sublevels is of the order of MeV
(d) Binding energy per nuclei is maximum for ${ }^{56} \mathrm{Fe}$

Q40. A particle of mass m is in an infinite square well potential of length L. It is in a superposed state of the first two energy eigenstates, as given by $\psi(x)=\frac{1}{\sqrt{3}} \left\lvert\, \psi_{n=1}(x)+\sqrt{\frac{2}{3}} \psi_{n=2}(x)\right.$. Identify the correct statement(s). h is Planck's constant.
(a) $\langle p\rangle=0$
(b) $\Delta p=\frac{\sqrt{3} h}{2 L}$
(c) $\langle E\rangle=\frac{3 h^{2}}{8 m L^{2}}$
(d) $\Delta x=0$

Ans. : (a), (b), (c)
Solution: Incoming momentum and outgoing momentum is same so $\langle p\rangle=0$

$$
\begin{aligned}
& \langle E\rangle=\frac{1}{3} E_{0}+\frac{2}{3} 4 E_{0}=3 E_{0}=\frac{3 \pi^{2} \hbar^{2}}{2 m L^{2}} \Rightarrow\langle E\rangle=\frac{3 h^{2}}{8 m L^{2}} \\
& \left\langle p^{2}\right\rangle=\frac{1}{3} \frac{\pi^{2} \hbar^{2}}{L^{2}}+\frac{2}{3} \frac{4 \pi^{2} \hbar^{2}}{L^{2}}=\frac{3 \pi^{2} \hbar^{2}}{L^{2}} \\
& \Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\frac{\sqrt{3} h}{2 L} \\
& \Delta x \neq 0
\end{aligned}
$$

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

Q41 - Q50 Carry One Mark Each

Q41. One of the roots of the equation, $z^{6}-3 z^{4}-16=0$ is given by $z_{1}=2$. The value of the product of the other five roots is \qquad
Ans. : -8
Solution: $z^{6}-3 z^{4}-16=0$
Let the roots be $\alpha, \beta, \gamma, \delta, \varepsilon, \eta$
$\alpha=2$ (given)
$\alpha \beta \gamma \delta \varepsilon \eta=\frac{-16}{1}=-16 \Rightarrow \beta \gamma \delta \varepsilon \eta=\frac{-16}{2}-8$
i.e product of other five roots $=-8$

Q42. The following Zener diode voltage regulator circuit is used to obtain 20 V regulated output at load resistance R_{L} from a 35 V dc power supply. Zener diodes are rated at 5 W and 10 V . The value of the resistance R is \qquad Ω.

Ans. : 30

Solution: $P_{Z M}=V_{Z} I_{Z M} \Rightarrow 5 W=10 \mathrm{~V} \times I_{Z M} \Rightarrow I_{Z M}=\frac{1}{2} \mathrm{~A}$
Current through R is $=\frac{35 V-20 \mathrm{~V}}{R}=\frac{15 \mathrm{~V}}{R}$
Thus $\frac{15 \mathrm{~V}}{R} \geq I_{Z M}=\frac{1}{2} \mathrm{~A} \Rightarrow R \leq 30 \Omega$.
Q43. A small conducting square loop of side l is placed inside a concentric large conducting square loop of side $L(L \gg l)$. The value of mutual inductance of the system is expressed as $\frac{n \mu_{0} I^{2}}{\pi L}$. The value of n is \qquad (Round off to two decimal places)

Ans.: 2.828

Solution: Assume smaller loop (loop-1) is at the centre of bigger loop(loop-2). Let current I is flowing in bigger loop.
Magnetic field at the centre of a square loop is $B=4 \times \frac{\mu_{0} I}{4 \pi d}\left(\sin \theta_{2}-\sin \theta_{1}\right)$
$\Rightarrow B=4 \times \frac{\mu_{0} I}{4 \pi L / 2}\left(\sin 45^{\circ}-\sin \left(-45^{0}\right)\right)=\frac{4 \mu_{0} I}{\pi \sqrt{2} L}$
Flux through loop-1 is $\phi_{1}=M I \Rightarrow B \times l^{2}=M I \Rightarrow \frac{4 \mu_{0} I}{\pi \sqrt{2} L} \times l^{2}=M I$
$\Rightarrow M=\frac{4}{\sqrt{2}} \frac{\mu_{0} I^{2}}{\pi L}=2.828 \frac{\mu_{0} I^{2}}{\pi L}$
Q44. Consider N_{1} number of ideal gas particles enclosed in a volume V_{1}. If the volume is changed to V_{2} and the number of particles is reduced by half, the mean free path becomes four times of its initial value. The ratio $\frac{V_{1}}{V_{2}}$ is \quad (Round off to one decimal place).
Ans. : 0.5
Solution: $\lambda=\frac{1}{\sqrt{2} n \pi d^{2}}=\frac{V}{\sqrt{2} N \pi d^{2}} \Rightarrow \lambda \propto \frac{V}{N} \Rightarrow V \propto \lambda N$
$\frac{V_{1}}{V_{2}}=\frac{\lambda_{1} N_{1}}{\lambda_{2} N_{2}}=\frac{\lambda_{1} N_{1}}{\left(4 \lambda_{1}\right)\left(\frac{N_{1}}{2}\right)}=0.5$
Q45. A particle is moving with a velocity $0.8 c \hat{j}$ (c is the speed of light) in an inertial frame S_{1}. Frame S_{2} is moving with a velocity $0.8 c \hat{i}$ with respect to S_{1}. Let E_{1} and E_{2} be the respective energies of the particle in the two frames. Then, $\frac{E_{2}}{E_{1}}$ is \qquad (Round off to two decimal places).
Ans. : 1.66
Solution: From S_{1} frame the velocity of particle is $0.8 c \hat{j}$ so energy is
$\frac{m_{0} c^{2}}{\sqrt{1-\frac{\left|v_{p, S_{1}}\right|^{2}}{c^{2}}}}=\frac{m_{0} c^{2}}{\sqrt{1-0.64}}=\frac{10}{6} m_{0} c^{2} \Rightarrow E_{1}=1.66 m_{0} c^{2}$
$u_{x}^{\prime}=0, u_{y}^{\prime}=0.8 c, v=0.8 c$
$u_{x}=\frac{u_{x}^{\prime}+v}{1+\frac{u_{x}^{\prime} v}{c^{2}}}=0.8 c, u_{y}^{\prime}=\frac{u_{y} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}}=0.8 c \sqrt{1-0.64}=0.8 c \times 0.6=0.48 c$
$\left|u_{p, s_{2}}\right|=\sqrt{(0.8)^{2}+(0.48)^{2}} c=\sqrt{0.64+0.23} c=\sqrt{0.87} c=0.93 c$
$E_{2}=\frac{m_{0} c^{2}}{\sqrt{1-0.87}}=\frac{m_{0} c^{2}}{0.36}=2.78 m_{0} c^{2} \quad \Rightarrow \frac{E_{2}}{E_{1}}=\frac{2.78}{1.67}=1.66$
Q46. At some temperature T, two metals A and B, have Fermi energies ϵ_{A} and ϵ_{B}, respectively. The free electron density of A is 64 times that of B. The ratio $\frac{\epsilon_{A}}{\epsilon_{B}}$ is \qquad .

Ans. : 16
Solution: The Fermi energy for metal A and B is written as
$\epsilon_{A}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{A}\right)^{2 / 3}$ and $\epsilon_{B}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{B}\right)^{2 / 3}$
The ratio of the Fermi energy is
$\frac{\epsilon_{A}}{\epsilon_{B}}=\left(\frac{n_{A}}{n_{B}}\right)^{2 / 3}=\left(\frac{64 n_{B}}{n_{B}}\right)^{2 / 3}=(64)^{2 / 3}=16$
Q47. A crystal has monoclinic structure, with lattice parameters, $a=5.14 \stackrel{0}{\mathrm{~A}}, b=5.20{ }_{\mathrm{A}}^{\mathrm{A}}$, $c=5.30 \AA$ and angle $\beta=99^{\circ}$. It undergoes a phase transition to tetragonal structure with lattice parameters, $a=5.09 \mathrm{~A}^{\circ}$ and $c=5.27 \mathrm{~A}$. The fractional change in the volume $\left|\frac{\Delta V}{V}\right|$ of the crystal due to this transition is \qquad (Round off to two decimal places).
Ans. : 0.024
Solution: Volume of the monoclinic unit cell is

$$
V_{\text {mono }}=a b c \sin (\beta)=5.14 \times 5.20 \times 5.30 \times \sin (99) \times 10^{-30} \mathrm{~m}^{3}=139.91 \times 10^{-30} \mathrm{~m}^{3}
$$

Volume of the tetragonal unit cell is
$V_{\text {tert }}=a^{2} c=5.09 \times 5.09 \times 5.27 \times 10^{-30} \mathrm{~m}^{3}=136.54 \times 10^{-30} \mathrm{~m}^{3}$
The fractional change in the volume $\left|\frac{\Delta V}{V}\right|$ is
$\left|\frac{\Delta V}{V}\right|=\frac{|139.91-136.54|}{139.91}=0.024$

Q48. A laser beam shines along a block of transparent material of length 2.5 m . Part of the beam goes to the detector D_{1} while the other part travels through the block and then hits the detector D_{2}. The time delay between the arrivals of the two light beams is inferred to be 6.25 ns . The speed of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The refractive index of the block is \qquad (Round off to two decimal places).

Ans. : 1.73 to 1.77
Solution: Time delay $\Delta t=\frac{\text { Extra path travelled }}{c} \Rightarrow \Delta t=\frac{(\mu-1) x}{c}$
$(\mu-1)=\frac{\Delta t c}{x}=\frac{6.25 \times 10^{-9} \times 3 \times 10^{8}}{2.5}=0.75 \quad \Rightarrow \mu=1.75$
Q49. An ideal blackbody at temperature T, emits radiation of energy density u. The corresponding value for a material at temperature $\frac{T}{2}$ is $\frac{u}{256}$. Its emissivity is \qquad (Round off to three decimal places).
Ans. : 0.063
Solution: We know $u=\varepsilon \sigma T^{4}$, where $\varepsilon=$ emissivity
For black body $\varepsilon=1$.
$\therefore u=\sigma T^{4}$
For other material $\frac{u}{256}=\varepsilon \sigma\left(\frac{T}{2}\right)^{4} \Rightarrow \frac{u}{256}=\varepsilon \sigma \frac{T^{4}}{16} \quad \Rightarrow \frac{u}{16}=\varepsilon \sigma T^{4}$
From (1) and (2)
$\varepsilon=\frac{1}{16}=0.0625 \approx 0.063$ (Rounded to three decimal places)
Q50. A particle with positive charge $10^{-3} \mathrm{C}$ and mass 0.2 kg is thrown upwards from the ground at an angle 45° with the horizontal with a speed of $5 \mathrm{~m} / \mathrm{s}$. The projectile moves through a horizontal electric field of $10 \mathrm{~V} / \mathrm{m}$, which is in the same direction as the horizontal component of the initial velocity of the particle. The acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$. The range is \qquad m. (Round off to three decimal places).

Ans. : 2.51
Solution: $\because y=u_{y} t-\frac{1}{2} g t^{2}$, Time of flight $T=\frac{2 u_{y}}{g}$
$\because x=u_{x} t+\frac{1}{2} \frac{q E}{m} t^{2}$, Range $R=u_{x} T+\frac{1}{2} \frac{q E}{m} T^{2}$
$R=u_{x} \frac{2 u_{y}}{g}+\frac{1}{2}\left(\frac{q E}{m}\right)\left(\frac{2 u_{y}}{g}\right)^{2}$
where $u_{x}=\frac{5}{\sqrt{2}}, u_{y}=\frac{5}{\sqrt{2}}, g=10, \frac{q E}{m}=\frac{10^{-3} \times 10}{0.2}=\frac{1}{20}$
$R=\frac{5}{\sqrt{2}} \frac{2 \times 5}{\sqrt{2}} \frac{1}{10}+\frac{1}{2}\left(\frac{1}{20}\right)\left(\frac{2 \times 5}{\sqrt{2} \times 10}\right)^{2}=\frac{2}{10} \frac{5}{+} \frac{1}{80}=2.5+0.0125=2.512$

Q51 - Q60 Carry Two Marks Each.

Q51. Consider a hemispherical glass lens (refractive index is 1.5) having radius of curvature $R=12 \mathrm{~cm}$ for the curved surface. An incoming ray, parallel to the optical axis, is incident on the curved surface at a height $h=1 \mathrm{~cm}$ above the optical axis, as shown in the figure. The distance d (from the flat surface of the lens) at which the ray crosses the optical axis
 is \qquad cm (Round off to two decimal places).
Ans.: 16
Solution: For the curved surface
$\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$
$\frac{1.5}{v}-\frac{1.0}{\infty}=\frac{1.5-1.0}{12}$
$\Rightarrow v=36 \mathrm{~cm}$
For the plane surface
$\frac{1.0}{d}-\frac{1.5}{24}=\frac{1.0-1.5}{\infty}$
$\Rightarrow d=16 \mathrm{~cm}$

Q52. Twenty non-interacting spin $\frac{1}{2}$ particles are trapped in a three-dimensional simple harmonic oscillator potential of frequency ω. The ground state energy of the system, in units of $\hbar \omega$, is \qquad .

Ans. : 60
Solution:
$E=\sum_{i} 2 g_{i} E_{i}=(2 \times 1) \times \frac{3}{2} \hbar \omega+(3 \times 2) \times \frac{5}{2} \hbar \omega+(2 \times 6) \times \frac{7}{2} \hbar \omega=(3+15+42) \hbar \omega=60 \hbar \omega$
Q53. A thin film of alcohol is spread over a surface. When light from a tunable source is incident normally, the intensity of reflected light at the detector is maximum for $\lambda=640 \mathrm{~nm}$ and minimum for $\lambda=512 \mathrm{~nm}$. Taking the refractive index of alcohol to be 1.36 for both the given wavelengths, the minimum thickness of the film would be
\qquad nm (Round off to two decimal places).

Ans. : 470.58
Solution:
$\left.\frac{\operatorname{air}\left(\mu_{a}=1\right)}{\operatorname{alcohol}\left(\mu_{a l}\right.}=1.36\right)$

Condition of maxima

$$
2 \mu_{L} t=n \lambda_{1} \quad \text { (1) } \quad(\lambda=640 \mathrm{~nm})
$$

Condition of minima

$$
2 \mu_{\mathrm{L}} t=(2 m+1) \lambda_{2} \quad \text { (2) } \quad\left(\lambda_{2}=512 \mathrm{~nm}\right)
$$

$$
\frac{n}{\left(m+\frac{1}{2}\right)}=\frac{\lambda_{2}}{\lambda_{1}}=\frac{512}{640}=\frac{4}{5} \Rightarrow \frac{2 n}{2 m+1}=\frac{2 \cdot(2)}{2(2)+1}
$$

$$
\Rightarrow n=m=2
$$

From equation (i)

$$
2 \times 1.36 \times t=2(640 \mathrm{~nm}) \Rightarrow t=\frac{(2 \times 640)}{2 \times 1.36} \mathrm{~nm} \quad \Rightarrow t=470.58 \mathrm{~nm}
$$

Q54. For the Boolean expression $Y=A B C+\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}$, the number of combinations for which the output $Y=1$ is \qquad .
Ans. 4

A	B	C	$D=A \oplus B$	$Y=\overline{D \oplus C}$
0	0	0	0	1
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	0

Solution: $Y=A B C+\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}$
$\Rightarrow Y=(A B+\bar{A} \bar{B}) C+(\bar{A} B+A \bar{B}) \bar{C}$
$\Rightarrow Y=D C+\bar{D} \bar{C} \quad$ where $D=A B+\bar{A} \bar{B}$
$\Rightarrow Y=\overline{D \oplus C}$
Q55. An $R C$ circuit is connected to two dc power supplies, as shown in the figure. With switch S open, the capacitor is fully charged. S is then closed at time $t=0$. The voltage across the capacitor at $t=2.4$ milliseconds is \qquad V (Round off to one decimal place).

Ans.: 18.824
Solution: Initially capacitor will be charged upto 20 V with polarity shown in figure.
When Switch S is closed, then at $t=2.4$ milliseconds
$v_{C}=V\left(1-e^{-t / R C}\right)=30\left(1-e^{-\frac{2.4 \times 10^{-3}}{6 \times 10^{3} \times 10 \times 10^{3}}}\right)$
$\Rightarrow v_{C}=30\left(1-e^{-0.04}\right)=30(1-0.9607)=1.176$ Volts
So net voltage across capacitor is

$$
=(20-1.176) \text { Volts }=18.824 \text { Volts }
$$

10 V

Q56. A current I is uniformly distributed across a long straight nonmagnetic wire ($\mu_{r}=1$) of circular cross-section with radius a. Two points P and Q are at distances $\frac{a}{3}$ and $9 a$, respectively, from the axis of the wire. The ratio of the magnetic fields at points P and Q is \qquad .

Ans. 3
Solution: Magnetic field inside the wire is $B=\frac{\mu_{0} I r}{2 \pi a^{2}} \Rightarrow B_{P}=\frac{\mu_{0} I(a / 3)}{2 \pi a^{2}}$
Magnetic field outside the wire is $B=\frac{\mu_{0} I}{2 \pi r} \Rightarrow B_{Q}=\frac{\mu_{0} I}{2 \pi(9 a)}$
Thus $\frac{B_{P}}{B_{Q}}=\frac{\mu_{0} I(a / 3)}{2 \pi a^{2}} \times \frac{2 \pi(9 a)}{\mu_{0} I}=3$
Q57. A particle A of mass m is moving with a velocity $v \hat{i}$, and collides elastically with a particle B, of mass $2 m, B$ is initially at rest. After collision, A moves with a velocity $v_{A} \hat{j}$. If v_{B} is the final speed of B, then $v_{A}^{2}=k v_{B}^{2}$. The value of k is \qquad .

Ans. : 1
Solution: From conservation of momentum in x-direction
$m v=2 m v_{B} \cos \theta$ \qquad
From conservation of momentum in y-direction
$0=m v_{A}-2 m v_{B} \cos \theta \Rightarrow m v_{A}=2 m v_{B} \sin \theta$.
Squaring and adding both equation
$v^{2}+v_{A}^{2}=4 v_{B}^{2}$ \qquad

From conservation of kinetic energy
$\frac{1}{2} m v^{2}=\frac{1}{2} m v_{A}^{2}+\frac{1}{2} 2 m v_{B}^{2} \Rightarrow v^{2}=v_{A}^{2}+2 v_{B}^{2}$
Solving simultaneously equation (3) and (4)
$v_{A}^{2}=v_{B}^{2} \Rightarrow k=1$
Q58. In an X - ray diffraction experiment with Cu crystals having lattice parameter $3.61{ }^{0}$, X - rays of wavelength of 0.090 nm are incident on the family of planes $\{110\}$. The highest order present in the diffraction pattern is \qquad .
Ans. : 5
Solution: Bragg's law is; $2 d \sin (\theta)=n \lambda \Rightarrow \frac{2 a}{\sqrt{h^{2}+k^{2}+l^{2}}} \sin (\theta)=n \lambda$
For the highest order $\sin (\theta)=1 ; n=\frac{2 a}{\lambda \sqrt{h^{2}+k^{2}+l^{2}}}=\frac{2 \times 3.61 \times 10^{-10}}{0.9 \times 10^{-10} \times \sqrt{2}}=5.67$
The maximum order is $n=5$
Q59. A parallel plate capacitor having plate area of $50 \mathrm{~cm}^{2}$ and separation of 0.1 mm is completely filled with a dielectric (dielectric constant $K=10$). The capacitor is connected to a $10 \mathrm{k} \Omega$ resistance and an alternating voltage $v=10 \sin (100 \pi t)$, as shown in the figure. The switch S is initially open and then closed at $t=0$. The ratio of the displacement current in the capacitor, to the current in the resistance, at time $t=\frac{2}{\pi}$ seconds is \qquad (Round off to three decimal places).

Ans.: 0.038
Solution: Displacement current density
$J_{d}=\varepsilon \frac{\partial E}{\partial t}=\varepsilon_{0} \varepsilon_{r} \frac{\partial}{\partial t}\left(\frac{v}{d}\right)=10 \varepsilon_{0} \frac{\partial}{\partial t}\left(\frac{10 \sin (100 \pi t)}{0.1 \times 10^{-3}}\right)$
$J_{d}=10^{6} \varepsilon_{0} \times 100 \pi \times \cos (100 \pi t)$
Displacement current $I_{d}=J_{d} \times A=10^{6} \varepsilon_{0} \times 100 \pi \times \cos (100 \pi t) \times\left(50 \times 10^{-4} \mathrm{~m}^{2}\right) \mathrm{Amp}$
At time $t=\frac{2}{\pi}$
$I_{d}=5 \times 10^{5} \pi \varepsilon_{0} \cos (200) \mathrm{Amp} \Rightarrow I_{d}=5 \times 10^{5} \times 3.14 \times 8.86 \times 10^{-12} \times 0.939 \mathrm{Amp}$
$\Rightarrow I_{d}=130.76 \times 10^{-7} \mathrm{Amp}$
Current through resistor R is
$I_{R}=\frac{v}{R} \mathrm{Amp}=\frac{10 \sin (100 \pi t)}{10 \times 10^{3}} \mathrm{Amp}=\frac{10 \sin (200)}{10 \times 10^{3}} \mathrm{Amp}=3.42 \times 10^{-4} \mathrm{Amp}$
Thus $\frac{I_{d}}{I_{R}}=\frac{130.76 \times 10^{-7} \mathrm{Amp}}{3.42 \times 10^{-4} \mathrm{Amp}}=0.038$
Q60. The wavelength of characteristic $K_{\alpha} X$ - ray photons from Mo (atomic number 42) is
\qquad ${ }^{0}$ (Round off to one decimal place).
(Speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$; Rydberg constant $R=1.09 \times 10^{7} / \mathrm{m}$)
Ans. : 0.73
Solution: $\sqrt{\frac{1}{\lambda_{k \alpha}}}=\sqrt{\frac{3 R}{4}}(Z-b)$
$\lambda_{k \alpha}=\frac{4}{3 R(Z-b)^{2}}=\frac{4}{3 \times 1.09 \times 10^{7} \times(42-1)^{2}}=0.73 \times 10^{-10} \mathrm{~m}$
$\Rightarrow \lambda_{k \alpha}=0.73 A^{0}$

Our Star Achievers

NET / JRF AIR - 01
Classroom Course

JEST AIR - 04
Online Live Batch

JRF AIR - 02
Classroom Course

GATE AIR-03
Pre-Recorded Batch

IIT-JAM AIR - 05
Online Live Batch

JEST AIR - 06
Online Live Batch

